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Abstract— Automatic parameter tuning is an important task
in real-world (experimental) optimization, in order to safely (e.g.
without crashing) explore an unknown environment. Example
includes smooth open-loop control of trajectory planning where
collisions must be avoided. Delaunay-based derivative-free op-
timization via Global Surrogate (∆-DOGS) algorithms are a
family of response surface method that efficiently and globally
minimizes black-box, computationally expensive, nonconvex
optimization problems; however, the challenge of restricting all
function evaluations to be “safe” during the parameter tuning
process has not yet been addressed in this family of algorithms.
In this work, we develop a new, safety-constrained variant of
this approach, dubbed S-DOGS, to automatically learn the safe
region of parameter space, while simultaneously characterizing
and optimizing the utility function under consideration, under
the assumption that the underlying safety constraints are
Lipschitz continuous and the safe region is connected and
compact. Theoretical analysis and experimental results are
provided to demonstrate that the resulting method is both
efficient in terms of the rate of convergence with the number
of function evaluations performed, and guaranteed to converge
to the global minimum while respecting the safety constraints.

I. INTRODUCTION

In autonomous systems, it is often necessary to tune
parameters in order to optimize towards a given objective.
However, users often do not know in advance the region(s)
of the otherwise feasible parameter space which, if explored
during the optimization process, could lead to severe damage
of the experimental system. For such problems, it is useful
to develop algorithms that automatically minimize a given
performance measure with unknown mathematical form, while
assuring at each function evaluation that the safety of the
system is guaranteed [9]. Real-world applications of such
problems include robot motion control, in which physical
collisions must be avoided.

The idea of safe exploration was considered by [2] [3] [7]
[13]and [14]. [9] proposed GP-UCB algorithm which max-
imizes the upper confidence bound of Gaussian process.
Although GP-UCB automatically plays the tradeoff between
exploitation and exploration, the safety issue has not been
yet addressed. [11] proposed the SAFEOPT algorithm which
implements Gaussian processes to safely optimize an objective
function by sampling at the most uncertain point in the
union of potential maximizer and the potential expansion sets.
While SAFEOPT proves to converge to the global minimum
within the reachable safe set, it might perform far too many
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function evaluations, since this paper only considers making
function evaluation at the point with the maximum uncertainty
in potential maximizers set and safe region expander set.
The efficiency should be improved since the uncertainty
information may not sufficiently capture the behavior of
the underlying function. Moreover, in this approach, only
the objective function itself is considered as the safety
constraint. Subsequently, [4] proposed the SAFEOPT-MC
algorithm to consider multiple safety constraints via Gaussian
processes(GP). [12] proposes STAGEOPT algorithm that
separates the safe learning task into exploration and exploita-
tion phases. STAGEOPT is more efficient since the objective
function considered during exploitation of STAGEOPT also
takes a model of the utility function into account.

Response Surface Methods (RSMs) are an efficient family
of derivative-free global optimization methods. Delaunay-
based derivative-free optimization via global surrogate (∆-
DOGS) is a highly-efficient modern variant of RSM that,
under the appropriate assumptions, guarantees convergence
to the global solution for nonconvex optimization problems
with computationally expensive objective functions [1][5].

In this paper, the framework of ∆-DOGS is extended such
that user-supplied unknown safety constraints are ensured
to be satisfied during each iteration of the optimization
process. The algorithm developed, dubbed Safety-guaranteed
Derivative-free Optimization via Global Surrogate (S-DOGS),
can be implemented to automatically, efficiently, and safely
learn the boundary of the underlying safe region, while
simultaneously identifying the global minimizer of the
objective function. Compared with these existing safe learning
algorithms which rely on GP model, the novelty of S-DOGS
algorithm is that it does not need the well specified kernel
function which requires a fine-tuning process in order to
guarantee safety and efficiency.

The structure of this paper is as follows: Section II
briefly reviews the main framework of ∆-DOGS. Section III
introduces the new S-DOGS algorithm. Section IV conducts
the theoretical convergence analysis of the algorithm. Section
V demonstrates the performance of the algorithm on a
synthetic test problem as well as a simulation of quadrotor
trajectory following problem. Section VI presents conclusions.

II. REVIEW OF ∆-DOGS WITH MESH REFINEMENT

In this section we briefly review the essential parts
of ∆-DOGS[5]. Recently ∆-DOGS has been extended to
address different problem settings, such as convex constraints
(∆-DOGS(C))[6], nonconvex or disconnected regions (∆-
DOGS(Ω))[1], implementing Cartesian grid to accelerate
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convergence (∆-DOGS(Z)). [15] proposed an algorithm
dealing with higher-dimensionality by applying dimension
reduction of active subspace method to project ∆-DOGS onto
a lower-dimensional embedding for parameters search.

The problem considered in ∆-DOGS is defined as

minimize f(x) with x ∈ B = {x|a ≤ x ≤ b} (1)

∆-DOGS builds up a response surface which is iteratively
minimized to provide information of where the minimizer
of the objective function locates with the highest probability.
This response surface is constructed based on an interpolant
p(x), which curves the fidelity of the truth function, and
an artificially designed uncertainty function e(x), which
quantifies how much uncertain the unexplored regions have.

Definition 1: Suppose Sk = {xi}ki=1 is the set of eval-
uated data points until k-th iteration. The Delaunay trian-
gulation ∆ is determined based on Sk and vertices V of
the box domain B. Suppose ri and oi are the circumradius
and the circumcenter of the circumsphere of each Delaunay
simplex ∆i respectively. In each Delaunay simplex ∆i, the
local uncertainty function ei(x) is defined as,

ei(x) = r2
i − ||x− oi||22, x ∈ ∆i. (2)

The constant K continuous search function is defined as the
surrogate model which is to be minimized at each iteration,
where the scalar parameter K is introduced as the tradeoff
between the exploitation of the underlying truth function and
the global exploration of the uncovered regions in the domain.

Definition 2: Consider Sk as the evaluated data points
and the uncertainty function is constructed in Definition 1.
Assume that p(x) is a robust interpolant based on Sk, then
p(x) = f(x) for x ∈ Sk. The constant K continuous search
function is defined as

s(x) = p(x)−K · e(x), x ∈ B. (3)
As ∆-DOGS proceeds with minimizing equation (3), the

minimizer xk is quantized onto the Cartesian grid defined as
follows.

Definition 3: The Cartesian grid over the entire feasible
box domain B with level ` is denoted as

M` =
{
x ∈ B| x = a+

j

2`
(b− a)ei, 1 ≤ i ≤ n, 0 ≤ j ≤ 2`

}
(4)

The finest mesh grid is defined as M`max
with highest mesh

grid level `max. For each mesh grid level `, the mesh size
δ` is computed as δ` = 1

2` . At each step, the mesh grid M`

quantizes xk as zk = M`(xk).

III. S-DOGS: SAFE LEARNING WITH ∆-DOGS
A. Problem Statement

In this paper, we consider the following optimization
problem,

Definition 4: Consider minimizing a black-box and non-
convex function f(x) : Rn 7→ R with m unknown safety
functions ψ(x) : Rn 7→ Rm,

minimize f(x) with x ∈ Σ : B ∩ C (5)
where B = {x|a ≤ x ≤ b}, C = {x|ψ(x) ≥ 0} (6)

where ψ(x) = [ψ1(x), ..., ψm(x)]T and the notation ψ(x) ≥
0 denotes that every function ψi(x) holds the inequality
ψi(x) ≥ 0. ψi(x) can be a function or even a subroutine that
performs a complex specific task and could return the safety
function values given a set of optimization parameters. The
safety function ψi(x) : Rn 7→ R is Lipschitz continuous with
a finite constant Li, i ∈ {1, ...,m},

|ψi(x1)− ψi(x2)| ≤ Li||x1 − x2||, ∀x1, x2 ∈ Σ (7)

We assume that the closed-form expression of f(x) and
ψ(x) are unknown but both of them could be evaluated given
parameters x ∈ B. Both of the objective function f(x) and
safety functions ψ(x) are exact measurements which contain
no noise. Due to the fact that all Lipschitz constants Li of
ψi(x) are finite real positive numbers, there exists an upper
bound L̄ such that L̄ ≥ Li,∀1 ≤ i ≤ m. Although the safety
functions are unknown, we assume that the safety function
could be estimated using Lipschitz continuity property. In this
paper we consider that the underlying safe region where the
safety constraints ψ(x) ≥ 0 are satisfied should be compact
and connected while convexity is not necessarily required.

To set up the problem, we assume that users have some
priori knowledge about the safety conditions of the system
which could offer a safe initial parameters x0 ∈ Σ.

B. Overview

The general idea of S-DOGS algorithm is to implement
derivative-free optimization scheme with safety functions
ψ(x) satisfied for the parameter sampling at each iteration.
The goal is to iteratively learn the boundary of the underlying
safe region as well as to minimize the unknown objective
f(x) without violating the unknown safety functions ψ(x).

S-DOGS separates the optimization process into two phases:
At the beginning, the algorithm tends to sample the parameters
far apart with each other to efficiently explore the safety of the
domain. It is intuitive to primarily have a general knowledge
about which part of the parameter space is classified as safe on
a coarse mesh grid. Once the known safe region is established
on the current mesh, the algorithm focuses on minimizing
the surrogate model to exploit inside the known safe region.
Eventually the algorithm would identify a region of interest
to locally refine the utility function on the finer mesh grid.

C. Safe Region Exploration

The exploration of the safe region is carried on using the
Lipschitz continuity of ψ(x). Given the safe initial point x0,
there exists an open hypersphere of x0, denoted as Ψ0, such
that the points inside Ψ0 are labeled as safe points. As the
algorithm evaluates new points, the known safe region will
be expand to include the point that has not yet been labeled
as safe on the current mesh grid.

Definition 5: Suppose a safe initial point x0 is pre-defined
and Sk denotes the evaluated data points. The convex hull
of Sk is denoted as CH(Sk). The known safe region Ψ`

k

based on the current mesh grid M` at iteration k is defined
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as

Ψ`
k = Sk ∪ {x ∈ B ∩M`| ∃x′ ∈ Sk

s.t. ψ(x′)− L̄||x− x′||2 ≥ 0}
(8)

The known unsafe region (Ψ`
k)c is denoted as the comple-

ment of Ψ`
k within B, (Ψ`

k)c = B\Ψ`
k.

As the algorithm samples the points close to the boundary
of Ψ`

k, its boundary will be further spreading out. Eventually,
as the iteration goes to infinity, each expanding step of the
safe exploration will become smaller and smaller. There exists
a limit of the known safe region called as maximum reachable
safe set.

Definition 6: Given a safe initial point x0 and the finest
mesh grid level `max the maximum reachable safe set Ψ̄(x0)
is defined as

Ψ̄(x0) = lim
k→∞

Ψ`max

k (9)

For simplicity, we use Ψ̄ to refer the maximum reachable
safe set Ψ̄(x0).

Note that given different safe initial point x0, the maximum
reachable safe set Ψ̄(x0) might be different. Ψ̄ is connected
but might be nonconvex. It is intuitive that based on safety-
guarantee it is not possible to leap from one safe region to
another safe region which are separated by an unsafe region
between them. As a result, the goal of the algorithm is seeking
the global minima within Ψ̄.

x∗ = arg min
x∈Ψ̄

f(x)

To expand Ψ`
k more efficiently, it is necessary to estimate

the safety conditions of the unevaluated safe points x inside
Ψ`

k. This is accomplished by building a smooth interpolant
qi(x) for each safety function ψi(x) over the entire domain
B.

Definition 7: Given the evaluated data points Sk. Compute
the interpolant qi(x) for each safety functions ψi(x). r(x1)
and r̂(x2) denote the safe radius of x1 ∈ Sk and the estimated
safe radius of x2 ∈ Ψ`

k \ Sk respectively.

r(x1) =
min{ψi(x1)}mi=1

L̄
, r̂(x2) =

min{qi(x2)}mi=1

L̄
(10)

The expansion set is a bunch of points inside the known
safe region which have not been evaluated yet. Performing
function evaluation on such points could possibly expand the
boundary of Ψ`

k based on current mesh grid.
Definition 8: Given the evaluated data points Sk and the

known safe region Ψ`
k on the mesh grid M`, the expansion

set G`
k is defined as

G`
k =

{
x ∈ Ψ`

k | P `
k(x) > 0, r̂(x) ≥ δ`

}
where P `

k(x) =
∣∣{y ∈ (Ψ`

k)c |
q(x)− L̄||x− y|| ≥ 0, r̂(y) ≥ δ`}

∣∣ (11)

The function P `
k(x) quantifies the cardinality of how many

unsafe points could possibly be classified as safe if x is
safely sampled. The restriction r̂(x) and r̂(y) are proposed
to efficiently sample the points on the current mesh grid.
If r̂(x) is too small, the algorithm tends not to evaluate x
because they can not expand Ψ`

k on M`. To efficiently expand

Ψ`
k, each iteration S-DOGS selects the point xk that has the

largest value of P `
k(x).

xk = arg max
x∈G`

k

P `
k(x) (12)

The construction of the Delaunay triangulation over the
entire parameter space B requires the vertices V of the
box domain B. However, user usually may not have much
knowledge about the safety conditions at boundary points V
and thus those vertices will often be classified in the unsafe
region (Ψ`

k)c. Therefore, the Delaunay triangulation has two
different kinds of Delaunay simplex.

Definition 9: Consider Sk as the evaluated data points
and V as the vertices of box domain B. At iteration k, the
Delauanay triangulation ∆k over points Sk∪V has two types
of Delaunay simplex defined as
• The interior Delaunay simplex ∆Ψ

k : Lies inside
CH(Sk), all vertices of ∆Ψ

k have already been evaluated;
• The exterior Delaunay simplex ∆Ψc

k : Lies outside of
CH(Sk), there exists at least one vertex of ∆Ψc

k which
has not yet been evaluated.

D. Uncertainty Function

Within ∆Ψ
k , we expect that the uncertainty of the unex-

plored region approaches maximum at the circumcenter of
interior Delaunay simplex. However, in ∆Ψc

k there exists at
least one vertex about which we do not have any safety
information. Therefore, we expect the uncertainty increases
as a bumpy shape when driving away from the evaluated data
points towards unsafe vertices of ∆Ψc

k . A new uncertainty is
proposed for exterior Delaunay simplex.

Definition 10: Consider Sk as the evaluated data points.
Inside the interior Delaunay simplex ∆Ψ

k , the uncertainty
function is defined in Definition 1. In contrast, the uncertainty
function in the exterior Delaunay simplex with parameters
0 < b < 1 and c > 0 is defined as follows,

e(x) = (||x− x̂||+ c)b − cb

where x̂ = arg min
x′∈Sk

||x′ − x||2 (13)

To balance the search in safe region and unsafe region, it
is critical to set the magnitude of two uncertainty functions
within approximately the same range. If the uncertainty
function in the exterior Delaunay simplex is much larger
than the uncertainty in the interior Delaunay simplex, it is
motivated to explore the region close to the boundary of the
safe region, and vice versa. More details about the procedures
to determine the parameters b and c could be found in Lemma
1. Illustrations of e(x) are shown in Fig. 1.

E. Exploitation

After obtaining a general knowledge of the safe region
on the current mesh grid, the algorithm iteratively identifies
the promising parameters via minimizing the surrogate s(x)
constrained with safety functions.

Definition 11: Consider Sk as the evaluated data points
and V as the vertices of B. The Delaunay triangulation
is constructed based on Sk ∪ V . Construct the uncertainty
function defined in equations (2) and (13) respectively based
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(a) 1D illustration at |S| = 9 (b) 1D illustration at |S| = 14

(c) 2D illustration at |S| = 1 (d) 2D illustration at |S| = 3

Fig. 1. The illustration of e(x). S denotes the set of evalauted data points.
In top figures, e(x) inside ∆Ψ

k is denoted in solid green line, e(x) in ∆Ψc

k
denoted in dotted green line. Bottom figures: 2D illustration of e(x) within
interior and exterior Delaunay simplices. For x ∈ S, e(x) = 0.

on different types of Delaunay simplices. The safe constrained
surrogate s(x) is defined as

min s(x) = p(x)−K · e(x),

s.t. ψ̂(x) = max
x′∈S

{
ψ(x′)− L̄||x− x′||

}
≥ 0,

(14)

The framework of the safe learning Delaunay-based algo-
rithm S-DOGS is shown in Algorithm 1. There are 3 different
type of iterations in Algorithm 1:

• Safe exploration sampling: The sampling point xk is
determined by G`

k in Line 8 of Algorithm 1. The known
safe region Ψ`

k will be expanded by sampling at site xk.
• Exploitation sampling: Either G`

k is empty or the
maximum uncertainty in G`

k is less than ε. S-DOGS
exploits the interior part of Ψ`

k−1 via minimizing the
surrogate model in Line 10 of Algorithm 1.

• Mesh refinement sampling: The sampling point xk al-
ready exists in Sk−1 which leads to the mesh refinement
and the increase of K.

IV. CONVERGENCE ANALYSIS

In this section, we only provide part of the essential lemmas
and theorems for S-DOGS convergence analysis due to the
restriction of pages. More detailed proof could be found at
http://fccr.ucsd.edu/pubs/zapb19.pdf and be
refined in a future version of this work.

Theorem 1: Given Sk as the set of evaluated data. As-
sume that the objective function f(x) and the interpolation
pk(x) are twice-differentiable and Lipschitz continuous with
constant Lf and Lp respectively. Assume that the uncertainty
function outside of CH(Sk) is defined in equation (13) with
parameters b and c found in Lemma 1. Assume that K is
chosen such that Lemma 6 and 7 are satisfied. Suppose
Lemma 5 is satisfied and define xk and x∗ as the minimizer

Algorithm 1 S-DOGS algorithm
1: Input: S0 = x0; Measurements f(x0) and ψ(x0); Box

domain B; Safe Lipschitz bound L̄; K and mesh grid
M0; Tolerance ε.

2: repeat
3: Calculate (or, update) the interpolant pk(x) of f(x)

and qk(x) for ψ(x) over Sk.
4: Calculate (or, update) the Delaunay triangulation ∆k

over Sk ∪ V .
5: Calculate b and c for e(x) in ∆Ψc

k using Lemma 1.
6: Calculate (or, update) the known safe region Ψ`

k and
expansion set G`

k.
7: if G`

k 6= ∅ and maxx∈G`
k
e(x) > ε then

8: xk = arg maxx∈G`
k
P `
k(x)

9: else
10: xk = arg minx∈Ψ`

k
s(x)

11: end if
12: if zk = M`(xk) ∈ Sk−1 then
13: Set ` = `+ 1, K ← 2K.
14: else
15: Evaluate f(zk) and ψ(zk).
16: end if
17: until ` achieves `max or target value achieved.

to constrained nonlinear programming (14) at iteration k and
the global minimizer inside Ψ̄ respectively. Then

0 ≤ f(x̂)− f(x∗) ≤ εk, with x̂ ∈ Sk,

where x̂ = arg min
x∈Sk

||x− xk||2,

εk = (Lp + 2KRmax)δk, δk = ||x̂− xk||2
and ψ(xk) ≥ 0, ψ(x̂) ≥ 0

(15)

Proof: Lemma 2 shows that the uncertainty function
is Lipschitz continuous with 2Rk

max. Since pk(x) is also
Lipschitz continuous with Lp, for x̂ and xk,

|pk(x̂)− pk(xk)| ≤ Lpδk,

|ek(x̂)− ek(xk)| ≤ 2Rk
maxδk,

|sk(x̂)− sk(xk)| ≤ (Lp + 2KRk
max)δk.

(16)

Since x̂ ∈ Sk, it is obvious that sk(x̂) = pk(x̂) = f(x̂),
combining these inequalities in equation (16) gives

f(x̂) ≤ sk(xk) + (Lp + 2KRk
max)δk (17)

Since x∗ either stays in ∆Ψ
k or ∆Ψc

k , by Lemma 6 and 7, we
have sk(xk) ≤ f(x∗). Finally, we have the inequality,

f(x̂) ≤ f(x∗) + (Lp + 2KRk
max)δk (18)

As the algorithm proceeds, Algorithm 1 determines a sequence
of global minimizers of sk(x), denoted as {xk}. By the
Bolzano-Weierstrass theorem and the search domain B ∈ Rn

is compact, there exists a subsequence of {xk} that converges
to a limit point, thus we have δk = ||x̂ − xk||2 converges
to zero. As a result, Algorithm 1 converges to the global
minimizer x∗.
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V. EXPERIMENTAL RESULTS

The performance of S-DOGS is shown in the following
two test problems. In this work, all the results are generated
by solving the nonlinear constrained optimization stated in
equation (14) using SNOPT [8]. Due to the pages restriction
only partial of the experimental results are shown below and
more test results are under preparation.

A. Synthetic test: 1D f(x)-Schwefel with 1D ψ(x)-Sinusoid

The objective function f(x) is an 1D Schwefel defined in
the search domain [0, 1] and is shown in equation (19). The
safety function is a sinusoidal function with the underlying
safe region [0.1, 0.9]. The objective function f(x) has 2 local
minimas and 1 global minimum inside the safe region. The
global minima locates at x∗ = 0.8419 with f(x∗) = −1.6759.
The initial parameters are set as K = 3 and L̄ = 4. The
initial mesh size is set to be 0.125 and `max = 7. Within 18
safe function evaluations, the relative error has been reduced
to 0.0247%. The sampling results of S-DOGS are shown in
Figure 2. Figures 2(c) and 2(d) shows that the sampling point
is concentrated around x∗ eventually.

f(x) = −2x sin(
√

500|x|), ψ(x) = sin(
5

4
(x− 0.1)π).

(19)
We also implemented SAFEOPT-MC algorithm on this test

problem by setting the variance of the noise terms to be 0
in order to cancel the effect of noise. The test results were
generated using default choice of kernel. More tuning on the
kernel function would give us fairly better results. The results
of SAFEOPT-MC on this test problem is illustrated in Fig. 3
which shows the SAFEOPT-MC converges to a local minima
close to the initial parameter x0. And one unsafe parameter
close to the boundary 1 is evaluated.

B. Quadrotor trajectory following problem

In this section S-DOGS is applied to optimize the parame-
ters of the quadrotor trajectory following problem. Suppose
the desired trajectory is given, our goal is to determine the
parameters of the quadrotor dynamic system such that the
actual trajectory is as close to the reference trajectory as
possible while avoiding the collision with the obstacle.

The dynamic of the quadrotor is setup by the states of
positions x = [x, y, z]T . In the inertial frame it is described
as ẍÿ

z̈

 = R(t)

 0
0
c(t)

−
0

0
g

 (20)

where R(t) is the rotation matrix from body frame to the
inertial frame, c(t) is the mass-normalized thrust and g is the
acceleration of the gravity.

The control inputs are the roll and pitch angles θ and φ.
In this test problem we only focus on the position of x and
y directions and z direction is fixed by control laws. The
PD-controller for this problem is defined as{

φk = k1(xk − xdes
k ) + k2(ẋ− ẋdes

k )

θk = k1(yk − ydes
k ) + k2(ẏ − ẏdes

k )
(21)

(a) k = 1 (b) k = 8

(c) k = 11 (d) k = 18

(e) Distance from candidate points
to x∗

(f) f(x) at candidate points

Fig. 2. S-DOGS on 1D Schwefel test problem (19). Top plot of the first four
figures: Truth function f(x), uncertainty e(x), interpolation p(x), surrogate
s(x), estimated safe region ψ̂(x) ≤ 0. Bottom plot of the first four figures:
Safety function ψ(x), 0 horizontal line in black solid line. Evaluated data
in blue squares and surrogate minima in red squares.

Fig. 3. SAFEOPT-MC on 1D test problem (19). Left figure: Truth function,
initial parameter x0 in red cross, evaluated data points in black cross. Right
figure: Safety function.

where k = (k1, k2) are two tuning parameters to control
the position of the quadrotor. The thrust c is solved via the
estimates of ZYX Euler angles (φ, θ, ψ). We assume that
at x = 3.5 there exists an obstacle with which we would
like our quadrotor to avoid collision. The box domain is
assumed to be [−1, 0]2. The parameters are set as K = 3,
L̄ = 3.5, the initial safe parameter k0 = (−0.5798,−0.2850),
`0 = 3 and `max = 7. S-DOGS automatically performs 3
times of mesh refinement at the beginning since the safe
radius of x0 is relatively small. The objective function is
the L2 norm distance from the desired trajectory to the

experimental trajectory, f(k) =

√∑N
i=1

(
xi(k)− xdes

i

)2
.
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(a) Exploration: k = 32 (b) Exploration: k = 74

(c) Exploitation: x∗ identified (d) Sampling Contour

(e) Quadrotor trajectories (f) f(x) convergence

Fig. 4. First 3 figures: The quadrotor parameters sampling with S-
DOGS: Green line-Boundary of Delaunay simplices, red background-∆Ψ

k ,
background-∆Ψc

k , blue squares-Sk , triangles-G`
k , red squares-xk , circles-

Ψ`
k , red star at bottom left-x∗, blue spheres-r(x), x ∈ Sk .

The safety function is defined as the distance between the
maximum position along x-direction of the trajectory and the
wall, ψ(k) = 3.5−max (x(k)).

The result of quadrotor trajectory following optimization
is shown in Fig. 4. Fig 4(a), 4(b) and 4(c) demonstrates
the parameter sampling as S-DOGS iterates. Notice that the
safe region are illustrated in pink in those figures. Fig. 4(d)
shows the positions where we sampled parameters in the
entire domain using red dot while unsafe region is depicted in
purple region. From the comparison of Fig. 4(c) and Fig. 4(d),
the underlying safe region has already been well explored by
S-DOGS sampling schemes around 160 iterations. Fig. 4(e)
shows that the trajectory of the initial safe parameter x0 is far
away from the reference trajectory, but eventually S-DOGS
identified the optimized trajectory which is fairly close to
the reference trajectory. Notice that the reference trajectory
is generated using arctan wave which cannot be perfectly
followed by the second-order system. All experiments are
carried on without violating safe constraints. Fig. 4(f) shows
the value of the objective function of candidate points at each
iteration.

VI. CONCLUSIONS AND FUTURE WORK

We extended Delaunay-based derivative-free optimization
method to incorporate safety exploration tasks. The proposed

safety learning algorithm S-DOGS provides theoretical ap-
proaches outside of Gaussian process which heavily depends
on a well-specified kernel function. S-DOGS also enables
efficient and safety-guaranteed data sampling scheme for
optimal parameters tuning approach. The theoretical proof
and experimental result are provided to demonstrate the
convergence to the global minimum within the maximum
reachable safe region.
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