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Abstract— Adaptive Observation (AO) strategies address the
effective deployment of mobile sensors for the estimation and
forecasting of physical systems. Of the many approaches to the
AO problem, few incorporate fully the dynamics of moving
sensors into the trajectory planning algorithm. We propose
a new AO algorithm, dubbed Dynamic Adaptive Observation
(DAO), which optimizes trajectories for the minimization of
forecast uncertainty while rigorously respecting the dynamic
constraints on the vehicle motion. This new algorithm is tested
here on a variety of stationary problems, with effective results.

I. INTRODUCTION

Adaptive Observation (AO) is a curious problem midway
between control theory and estimation theory. The idea
of AO, ultimately, is to determine control inputs to route
mobile sensors in the near future in a manner that minimizes
the uncertainty of a future state estimate or forecast. AO
algorithms can be either distributed or centralized.

In distributed AO, each mobile sensor has little or no
knowledge of the sensed system, and deployment is planned
locally. The idea is that collective simple behaviors may lead
to global actions that improve the uniformity of the sensor
distribution, while perhaps clustering sensors in regions of
particular interest. Its inherent simplicity enables distributed
AO to be deployed easily. Existing distributed AO algorithms
typically reduce the AO problem to an optimal coverage
problem (see [1], [2]), or to an extremum or level-set
seeking problem (see [3], [4], [5]). While these approaches
work adequately for certain applications, their performance
is degraded in convection-driven (that is, wind-dominated
rather than diffusion dominated) problems with complicated
level sets, such as those encountered in atmospheric and
oceanographic applications.

In contrast, centralized AO strategies leverage the sensed
system model to optimize the sensor motions. The system
models used in centralized AO are often computationally
intensive; hence, the bulk of the computations performed in
AO implementations are typically off-loaded to a centralized
supercomputer cluster, and the optimized trajectories (or
waypoints selected along them) broadcast to the vehicles.
Note that [6] reviews some centralized AO algorithms used
in the weather forecast community, and [7] reviews some AO
implementations in the ocean forecasting community.

As we are interested in applying AO to large-scale sys-
tems, we focus the present work on centralized AO strategies.
These strategies may be further divided into “sensitivity-
based” and “uncertainty-based” approaches. In sensitivity-
based AO (see [8], [9]), a system adjoint is used to reveal
“sensitive regions” of the domain that contribute significantly
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to the forecast uncertainty. However, most approaches that
follow such an approach do not address how such “sensitive
regions” should be optimally probed by the mobile sensors
(note that this issue is partially addressed in [10] and [6]).
The strength of sensitivity-based AO algorithms is their
relative speed and computational efficiency, as the cost of
the sensitivity computation is on the same order as the
computational cost of the forward system propagation itself.

Uncertainty-based AO algorithms (see [11], [12]) take an
altogether different approach. Rather than computing the
sensitivity of the forecast, they seek a measurement location
sequence that minimizes the forecast uncertainty. This is usu-
ally achieved by considering a large set of possible vehicle
waypoint sequences, and computing the anticipated forecast
uncertainty associated with each. For example, when imple-
menting an Ensemble Transform Kalman Filter (ETKF) on
a practical system, [13] simply considered 40 pre-approved
feasible flight paths, and selected among them. In complex
systems with a large number of sensors, this set might be
extremely large, and it is computationally infeasible to search
them all. As recognized by [11], as each forecast is computed
independently, this algorithm is at least “embarrassingly”
parallel (that is, the algorithm completion time is inversely
proportional to the computational resources available); how-
ever, it is generally not very efficient. In [12], the authors
search for a waypoint sequence using a Mixed Integer Linear
Programing (MILP) method, thereby substantially reducing
the set of trajectories that must be considered. In this work,
vehicle dynamics are approximated with linear constraints in
the MILP. Because linear constraints cannot model complex
vehicle dynamic constraints, the authors had to be overly
conservative with the imposition of the constraints to ensure
a dynamically feasible solution in the end, resulting in
unnecessarily sluggish optimized vehicle trajectories.

The aforementioned centralized AO algorithms consider
systems with time scales much slower than the time scales
of the moving sensors themselves. Thus, vehicle dynamics
have not been fully incorporated into the formulation of any
of them. The present algorithm fills this void. We appre-
ciate the steps towards computational efficiency that have
been achieved by both sensitivity-based AO strategies and
uncertainty-based AO strategies leveraging MILP methods,
but seek a method that more precisely takes the actual vehicle
dynamic constraints into account.

Towards this end, we propose a new centralized AO
algorithm, dubbed Dynamic Adaptive Observation (DAO),
that combines various features from existing AO approaches
while incorporating the full vehicle dynamics. DAO uses the
Kalman Filter to predict the future estimation error covari-
ance and to compute the best control, subject to the vehicle
dynamic constraints, to minimize the forecast uncertainty.
This is achieved by minimizing a relevant cost function



balancing a metric of the forecast quality with another metric
measuring the cost of the control applied to the vehicles.
Because explicit formulation of the optimal control with
respect to the cost function is difficult to derive analytically,
we use adjoint analysis to calculate the local gradient, and
compute the optimal control iteratively.

The rest of the paper is as follows: in §II, we formulate the
AO problem, where our objective is to minimize a cost bal-
ancing a measure of the forecast quality with vehicle-related
penalties. Adjoint analysis is perform on the cost to reveal
local gradient information in §III; this local gradient is used
to iteratively optimize the control. Various generalizations
to DAO are discussed in §IV, and some example and our
conclusions are presented in §V and §VI.

II. AO PROBLEM FORMULATION

Consider N autonomous vehicles are available in a do-
main. Within the domain there is a discretized PDE f with
state variables defined over n grid points. The field evolves
with the following underlying discrete-time linear dynamics

fk+1 = Afk + Bwk, wk ∼ N(0,W ), (1)

where the normally distributed zero-mean wk with covari-
ance W models random forcing and uncertainty in the model.

The ith vehicle’s discrete-time dynamical equation with
states and controls variables qi and ui is:

qi
k+1 = Fqi

k + Gui
k. (2)

As the vehicles move and measure various aspect of f ,
vehicle states such as position, heading, and velocity affect
the measurement, and the measurement noise statistics may
also be affected. Hence vehicle i’s measurement matrix Hi

and measurement noise covariance Ri are dependent on the
vehicle states qi. For convenience, the notation to emphasize
the state dependencies are dropped with the understanding
that it is implied when Hi

k and Ri
k are used. The measure-

ment vector yi
k from the ith vehicle is modeled

yi
k = Hi

kfk + vi
k, vi

k ∼ N(0, Ri
k), (3)

with the collective Rk, Hk, and yk

Rk =

R1
k 0

. . .
0 RN

k

 ,Hk =

H1
k

...
HN

k

 ,yk =

y1
k
...

yN
k

 . (4)

The vehicle measurements are assimilated to improve the
field estimate, f̂ , which is modeled

f̂−k+1 = Af̂+
k , (5a)

f̂+
k = f̂−k − Lk(yk − ŷk), (5b)

with the predicted measurement vector ŷk defined as

ŷk = Hk f̂−k , (6)

where ()+ and ()− denote the background (before the
measurement update) and the analysis (after the measure-
ment update), respectively. Lk is the standard discrete-time
Kalman Filter gain

Lk = P−
k HT

k

(
HkP−

k HT
k + Rk

)−1
, (7)
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Fig. 1. Cartoon illustrating the problem formulation. The controls ui
k

affect the evolution of the sensor vehicle trajectories qi
k . The sensor vehicle

positions at the measurement times, qi
k , in turn, affect the updates to the

covariance of the estimation error Pk . The cost J depends on PF and the
ui

k; a set of controls ui
k is sought to minimize this cost.

where Pk is the state estimate error covariance Pk =
E{f̃k f̃T

k } with expected value operator E(·) and estimation
error f̃k = fk − f̂k. The evolution of Pk is derived from (1)
and (5)

P−
k+1 = AP+

k AT + BWBT (8a)

P+
k = P−

k − P−
k HT

k

(
HkP−

k HT
k + Rk

)−1
HkP−

k . (8b)

Our AO problem is framed as followed. At initial time
k = 0 the vehicle states and estimation error covariance, qi

0

and P0, are known. Design a minimal effort control input
sequence ui

k for each vehicle within the time window k ∈
[0,K], such that a metric of the forecast quality at some
final time k = F , F ≥ K, conditioned on the measurements
gathered by the vehicles, is minimized. We choose a quadratic
penalty to quantify control effort and the sum of the variance
as the forecast quality metric. This problem can be solved by
finding a minimizing solution to the following (scalar) cost
function J :

min
ui

k

J = trace(TPF ) +
1
2

N∑
i=1

K−1∑
k=0

(ui
k)T Quui

k, (9)

where T is a diagonal matrix that targets specific regions
of the domain (e.g. T = I if the region is the entire
domain), and Qu is a symmetric positive-definite matrix. Fig.
1 illustrates the relationships between J , Pk, qi

k and ui
k.

Due to the non-linear effect ui
k has on PK , J is a non-

linear, possibly non-convex, function in ui
k; hence J may

contain multiple local minimum.

III. COMPUTING OPTIMAL ui
k

One way to find the optimal solution for (9) is by ana-
lytically compute the derivative of J in terms of ui

k and set
the derivative equal to zero and solve for the solution in one
step. However expressing J explicitly in ui

k is complicated,
as seen from Fig. 1. Another way is computing the solution
iteratively using gradient-based optimization methods, which
utilize the local gradient of J w.r.t. ui

k. We employ adjoint
analysis to find this gradient Oui

k
J , and this is illustrated in

the following.
In addition to the pre-specified qi

0 and P0, suppose we
assume an initial ui

k; with this, qi
k and Pk are propagated

and J evaluated. A perturbation is applied to the initial ui
k,

which sets off a chain reaction that also causes perturbations



in qi
k, Ri

k, Hi
k, P i

k and J . The first-order perturbations to
these variables are:

qi
k+1
′ = Fqi

k
′ + Gui

k
′, qi

0
′ = 0, (10a)

P−
k+1
′ = AP+

k
′AT , P ′

0 = 0, W ′ = 0 (10b)

P+
k
′ = P−

k
′− (P−

k
′HT

k +P−
k (H ′

k)T )LT
k−Lk(HkP−

k
′+H ′

kP−
k )

+ Lk(H ′
kP−

k HT
k +HkP−

k
′HT

k +HkP−
k (H ′

k)T+R′k)LT
k ,

(10c)

J ′ = trace(TP ′
F ) +

N∑
i=1

K−1∑
k=0

(ui
k)T Quui

k
′, (10d)

R′k =

R1
k
′ 0

. . .
0 RN

k
′

 , Ri
k
′ =

(
dRi

k

dqi
k

)T

qi
k
′,

(10e)

H ′
k =

H1
k
′

...
HN

k
′

 , Hi
k
′ =

(
dHi

k

dqi
k

)T

qi
k
′. (10f)

The reason why qi
k
′, P ′

0, and W ′ are zero is because we
don’t have control over these variables. Note that dRi

k

dqi
k

and
dHi

k

dqi
k

are rank-3 tensors that contracts to rank-2 matrices Ri
k
′

and Hi
k
′ by the inner product with qi

k
′. The matrix inverse

identity (Φ−1)′ = −Φ−1Φ′Φ−1 [14] is used in (10c), with
Φ = HkPkHT

k + Rk. The Taylor Expansion of J about the
initial ui

k is

J ′ =
N∑

i=1

K−1∑
k=0

(
Oui

k
J(ui

k)
)T

ui
k
′, (11)

which resembles the second term in (10d). The remaining
formulation illustrates how to convert trace(TP ′

F ) to a
similar form.

We begin by first writing the forecast from P+
K to PF using

(8a) and compute the corresponding perturbation equation:

PF = A(A(· · · (AP+
KAT+BWBT ) · · · )AT+BWBT )AT

+ BWBT (12a)

P ′
F = AK,F P+

K
′AT

K,F , AK,F ,
F−1∏
k=K

A. (12b)

Substituting (12b) into (10d) and rearranging the terms using
trace identity trace(AB) = trace(BA) = trace(AT BT ):

J ′ = trace(AT
K,F TAK,F P+

K
′) +

N∑
i=1

K−1∑
k=0

(ui
k)T Quui

k
′.

(13)
Next (10b) is substituted into (10c) to form the evolution

equation for P+
k
′, which allows us to only consider P+

k at
any time k from now on; hence from hereon we shall use Pk

in place of P+
k . The terms containing P ′

k, R′k, and H ′
k are

grouped together in the merged equation, and two operators

L(P ′)k and B(R′,H ′)k are defined:

L(P ′)k , P ′
k+1 −AP ′

kAT − LkHkAP ′
kAT HT

k LT
k

+ AP ′
kAT HT

k LT
k + LkHkAP ′

kAT , (14a)

B(R′,H ′)k , LkR′kLT
k −APkAT (H ′

k)T LT
k −LkH ′

kAPkAT

+ Lk(H ′
kAPkAT HT

k +HkAPkAT (H ′
k)T )LT

k ,
(14b)

L(P ′)k = B(R′,H ′)k. (14c)

Note that (14c) is just a rearrangement of the merged equa-
tion replaced with the new operators. The L(P ′)k operator
defines the unforced dynamics of P ′

k, while B(R′,H ′)k

defines the forcing applied.
A matrix adjoint variable Sk is defined and an adjoint

identity is framed based on a relevant inner product:

〈S,L(P ′)〉 = 〈L∗(S), P ′〉+b, 〈X, Y 〉,
K−1∑
k=0

trace(XT
k Yk).

(15)
Note the RHS of the adjoint identity, namely L∗(S)k and b,
have yet to be defined. Doing the necessary rearrangement
of sums and applying the trace identity when necessary, the
LHS of (15) is recast into the form on the RHS, and the
expression for L∗(S)k and b are readily identified:

L∗(S)k = Sk−1 −AT (I −HT
k LT

k )Sk(I − LkHk)A,
(16a)

b = trace(ST
K−1P

′
K). (16b)

Similar to the L(P ′)k operator, the L∗(S)k operator de-
fines the unforced dynamics of Sk; however unlike L(P ′)k,
L∗(S)k defines a propagation backwards in time. Further-
more, we have complete freedom in choosing the forcing
applied to Sk and from b the starting condition of S. The
goal here is to choose the forcing and starting condition of
S carefully such that we could leverage (14c) to replace all
P ′

k terms into R′k and H ′
k.

Upon examining (13), SK−1 is chosen such that SK−1 =
AT

K,F TAK,F and L∗(S)k = 0 (that is, the evolution is S is
unforced). Thus by (15) and (14c), (13) becomes:

J ′ = 〈S,B(R′,H ′)〉+
N∑

i=1

K−1∑
k=0

(ui
k)T Quui

k
′. (17)

Note by the symmetric construction of (16a) and the starting
condition for S, for all time Sk is symmetric — just like the
covariance matrix Pk during forward propagation. Inserting
(14b) into (17) while leveraging the trace identity to shift R′k
and H ′

k to the right,

J ′ =
N∑

i=1

K−1∑
k=0

(ui
k)T Quui

k
′ +

K−1∑
k=0

trace(LT
k SkLkR′k)

+
K−1∑
k=0

trace
(
2APkAT (HT

k LT
k − I)SkLkH ′

k

)
,



and when the structure of H ′
k and R′k in (10e) and (10f) is

also leveraged,

J ′ =
N∑

i=1

K−1∑
k=0

trace((LT
k ST

k Lk)ii

(
dRi

k

dqi
k

)
)T qi

k
′

+
N∑

i=1

K−1∑
k=0

trace((2APkAT(HT
kLT

k−I)SkLk)i

(
dHi

k

dqi
k

)
)Tqi

k
′

+
N∑

i=1

K−1∑
k=0

(ui
k)T Quui

k
′, (18)

where (LT
k ST

k Lk)ii denotes the (i, i) block of the N × N
block matrix LT

k ST
k Lk and (2APkAT(HT

k LT
k − I)SkLk)i

denotes the ith column block of the 1 × N block matrix
2APkAT(HT

k LT
k −I)SkLk.

So far (18) is not yet in the form required by (11). To
further rewrite qi

k
′ into ui

k
′, the same adjoint analysis for the

vehicle states is performed. From (10a) M(q′)i
k is defined,

along with N vector adjoint variables ri
k and an adjoint

identity based on a relevant inner product. After performing
the necessary rearrangement of sums, M∗(r)i

k and bi are
identified:

qi
k+1
′ − Fqi

k
′︸ ︷︷ ︸

M(q′)i
k

= Gui
k
′, (19a)

〈〈ri,M(q′)i〉〉 = 〈〈M∗(r)i,qi ′〉〉+ bi, 〈〈x,y〉〉 ,
K−1∑
k=0

xT
k yk,

(19b)

M∗(r)i
k = ri

k−1 − FT ri
k, (19c)

bi = (ri
K−1)

T qi
K
′. (19d)

Leveraging these expressions, it follows that if the following
adjoint conditions are also enforced:

M∗(r)i
k = trace((2APkAT(HT

k LT
k −I)SkLk)i

dHi
k

dqi
k

)

+ trace((LT
k ST

k Lk)ii
dRi

k

dqi
k

, (20a)

ri
K−1 = 0, (20b)

then the evolution equation and starting condition for ri are
both defined. Finally substituting (19a) and (20a) into (19b)
reveals the relationship between qi

k
′ and ui

k
′, and (18) is

readily expressed into the proper form required in (11) for
extracting the local cost function gradient:

J ′ =
N∑

i=1

K−1∑
k=0

(ri
k)TB(u′)i

k +
N∑

i=1

K−1∑
k=0

(ui
k)T Quui

k
′

=
N∑

i=1

K−1∑
k=0

(GT ri
k + Quui

k︸ ︷︷ ︸
O

ui
k

J

)T ui
k
′. (21)

This local gradient can then be used to update the current
initial control sequence via a suitable minimization algorithm
such as steepest descent, conjugate gradient, limited-memory
BFGS, and etc. At the end of the minimization the updated

control sequence is used to start the next iteration of the
optimization.

The DAO algorithm may be summarized as follows:

À Propagate qi
0 to qi

K with ui
k using (2), then prop-

agate P0 to P+
K using (8)

Á SK−1 ← AT
K,F TAK,F (Note this is equivalent to

defining SF ← T at time k = F and propagating
SF to SK−1 using dynamics Sk−1 = AT

k SkAk),
and ri

K−1 ← 0.
Â Propagate SK−1 to S0 using (16a), then propagate

ri
K to ri

0 using (20a)
Ã Oui

k
J ← GT ri

k + Quui
k. Use gradient-based op-

timization method to find the decent direction pi
k

and step size α
Ä ui

k ← ui
k + αpi

k, check convergence, and return to
À if not yet converged.

IV. GENERALIZATION

For clarity sake, we restricted the DAO derivation in
section III to a specific cost function, linear dynamics,
and identical dynamics and sensors in all vehicles. The
generalizations of the these restrictions are discussed here.

A. Generalize Cost Function

The vehicle penalty portion in (9) is not restricted to be
quadratic and penalizes only ui

k, other types of penalties can
be incorporated. In general,

J = trace(TPF ) +
N∑

i=1

( K−1∑
k=0

gi(qi
k,ui

k) + hi(qi
K)

)
. (22)

Note if gi(·, ·) and hi(·) are quadratic, one would have the
standard Linear Quadratic Regulator familiar in the controls
community, where gi(·, ·) is the state and control trajectory
penalties and hi(·) the terminal state penalty. Also this
formulation allows the possibility to penalize each vehicle
differently. Without re-deriving, the modifications to DAO
are described in the following.

Suppose the perturbation of gi(qi
k,ui

k) and hi(qi
K) can

be written as

gi(qi
k,ui

k)′ =
(

∂gi(qi
k,ui

k)
∂qi

k

)T

qi
k
′ +

(
∂gi(qi

k,ui
k)

∂ui
k

)T

ui
k
′,

hi(qi
K)′ =

(
dhi(qi

K)
dqi

K

)T

qi
K
′.

The local cost function gradient is now expressed as

Oui
k
J = GT ri

k +
∂gi(qi

k,ui
k)

∂ui
k

. (23)

The terminal state penalty simply changes the starting con-
dition of ri, and the state trajectory penalty introduces an
additional forcing to the ri evolution equation. Equation (20)



now becomes

L∗(r)i
k = trace((2APkAT(HT

k LT
k −I)SkLk)i

dHi
k

dqi
k

)

+ trace((LT
k ST

k Lk)ii
dRi

k

dqi
k

) +
∂gi(qi

k,ui
k)

∂qi
k

,

(24a)

ri
K−1 =

dhi(qi
K)

dqi
K

. (24b)

B. Nonlinearities

In section II we assumed linear models and used the
Kalman Filter for the covariance update. For nonlinear
models DAO can be modified to work with the Extended
Kalman Filter.

Dealing with nonlinear vehicle model is simple, one needs
to propagate and store the trajectory of each qi

k. During the
vehicle adjoint propagation and cost function gradient evalu-
ation, the linearized F (qi

k,ui
k) and G(qi

k,ui
k) are evaluated

along the trajectory of qi
k and ui

k.
However having a nonlinear field model introduces ad-

ditional complexities. Namely, the Extended Kalman Filter
requires linearized A(f̂+

k ) and B(f̂+
k ) evaluated using the

updated estimate f̂+
k and the linearized measurement oper-

ator H(f̂−k ) evaluated using the predicted estimate f̂−k —
both estimates are unknown during the forecast because the
knowledge of the future measurements is required.

Since the best estimate at current time is f̂+
0 , the best guess

on the future measurements y at time k = 1 is obtained by
forecasting f̂+

0 to f̂−1 and apply the output operator H1 to
predict y1. Using this predicted measurement in (5b) implies
f̂+
1 = f̂−1 . In general if f̂+

k is given, one could follow the same
steps to show that f̂+

k+1 = f̂−k+1. Thus by induction it is clear
to see that an open-loop forecast from f̂+

0 gives f̂+
k and f̂+

k for
linearizing A, B, and H . Therefore with nonlinear models,
one also needs to know f̂0 in order to propagate and store
Pk qi

k, and f̂k.

C. Multiple Vehicle and Sensor Types

In some instances, vehicles with different dynamical prop-
erties carrying different instruments are deployed. For exam-
ple, in weather forecasting one aircraft may carry a Doppler
Radar to give a global view of the weather system while
several UAVs are carrying barometers, temperature sensors,
and humility sensors to provide pin-point measurements. By
replacing F and G with F i and Gi, allowing Hi and Ri

to be different for each vehicle, and adjust the size of block
matrices of (LT

k ST
k Lk)ii and (2APkAT(HT

k LT
k −I)SkLk)i

appropriately based on the size of Ri and Hi, DAO is
capable in handling multiple vehicles with different vehicle
dynamics and sensor types.

D. Routine Measurements

In some situations supplemental routine measurements
are also available in the future. These measurements typ-
ically come from existing stationary sensor networks that
makes routine measurements (e.g. sensor buoys), while some

other times these measurements come from non-controllable
sources (i.e. wind data from boats). Routine measurements
should be incorporated into the AO formulation to avoid
redundant measurements. This is done by augmenting Hk

and Rk such that

Hk ,

[
Hr

k 0
0 HAO

k

]
, Rk ,

[
Rr

k 0
0 RAO

k

]
. (25)

Note when performing perturbation analysis, the perturbation
of Hr

k and Rr
k to qi

k are zero since we cannot control the
routine measurement placements.

V. EXAMPLE

Considered a square domain of size 100×100. The target
region is the entire domain (T = I) with K = F = 300 as
the optimization and forecast time window (i.e. no forecast
from P+

K to PF ). Two (N = 2) vehicles are available for AO
purposes with each vehicle having the point-mass dynamics

ẋ
ẍ
ẏ
ÿ

 =


0 1 0 0
0 −1 0 0
0 0 0 −1
0 0 0 −1




x
ẋ
y
ẏ


︸︷︷︸
qi

+


0
ux

0
uy


︸ ︷︷ ︸

ui

.

At present time k = 0 both vehicles start at (0, 0) with
initial control trajectories u1

k and u2
k that produce initial state

trajectory q1
k and q2

k. The initial vehicle waypoints sequence
are shown in Fig. 2. For simplicity, Qu = I for the cost
function, vehicle state trajectory and terminal state penalties
are ignored, f is evolving linearly without disturbance (W =
0), each vehicle has the same linear vehicle dynamic and
sensor, and the initial P0 is diagonal. Three different P0 are
considered: the first is an uniform unit background variance,
the second consists 3 Gaussian bumps of different amplitudes
and attenuations in the domain, and the third is the sum of the
first two. Fig. 3 illustrates the three different P0. A Kalman
Filter is used for the covariance updates.

Suppose we have a specialized imaging system which
takes a 360-degree-view image of the domain. The camera
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Vehicle 2
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Fig. 2. Initial vehicle waypoints sequences created by initial control
sequences u1

k and u2
k . The waypoint sequences are symmetric about the

domain diagonal.



(a) Unit variance. (b) Gaussian bumps. (c) Sum of first two.

Fig. 3. The three different initial P0 used in the example. (a) is an uniform
unit variance. (b) is composed of 3 Gaussian bumps of different amplitude
and attenuations. (c) is the sum of (a) and (b).

can “see” all n grid points in the domain; so for each vehicle
Hi

k = I . Like real-world imaging systems, the image quality
gets progressively worse as the subject is further away from
the camera (poor pixel resolution). This is modeled with Ri

k,
where the measurement noise variance at each grid point is
proportional to the distance to the vehicle’s location squared

Ri
k =

β

2
diag

(
(qi

1k1− z1) · (qi
1k1− z1)

+ (qi
3k1− z2) · (qi

3k1− z2) + ε1
)
, (26)

where β is a proportional constant, qi
1k and qi

3k are the first
and third elements of qi

k, z1 and z2 are the discretized grid
point locations, 1 is a vector of 1s of the appropriate size, and
(·) denotes element-wise multiplication. The ε term serves
two purposes: first it models the camera intrinsic digital back-
ground noise such as quantization error, and second it ensures
the positive-definiteness of Ri

k required by the Kalman Filter.
Simply put, Ri

k is a quadratic bow in space centered at the
vehicle i’s position (xi, yi), while β scales the bowl; thus a
grid point measurement further away would have a greater
measurement noise covariance. Note if a vehicle’s position
coincides with a grid point, then for a small ε (this is true
in general since quantization error is much smaller than the
signal) we essentially have the state measurement at that grid
point, and the estimation uncertainty at that grid point is
driven to nearly zero regardless of the initial uncertainty.
Two different proportionality constants, β = 1 and β = 0.1,
are used to investigate the effect of β to the vehicle behaviors.
One may interpret β = 1 as a narrow-view camera, and
β = 0.1 as a wide-view camera. In both cases ε = 0.001.

The domain is discretized with n = 101 × 101 = 10201
grid points; hence f has 10201 state variables. Typically this
poses a significant simulation challenge since the storage
requirement for the covariance matrix Pk, which has size
10201×10201, is large. This problem would not resolve even
we leverage the symmetric property of Pk and only store
the upper diagonal part of P . Furthermore propagating and
updating Pk involves matrix multiplications, which requires
significant computation time. However if we restrict the
A matrix in (1) and P0 to be diagonal, then the entire
computation can be carried out by tracking only the diagonals
of the relevant matrices. This is proved in the Appendix. We
choose A = αI where α =

√
1.01; thus if no measurement

updates are performed, at the end of the time window P0

would have grown by 1.01300 ≈ 20 times.

1) Simulation Results: The converged optimal vehicle
waypoint sequences for all three P0 in Fig. 3 with β = 0.1
are shown in Fig. 4.

As seen in Fig. 4a, when the uncertainty is uniform the re-
sulting waypoint sequences take on an uniform-coverage ap-
proach. The symmetry in the converged waypoint sequences
is due to the symmetric vehicle initial conditions. We have
also ran the same simulation with non-symmetric vehicle
initial conditions (not shown). The symmetry of the resulting
waypoint sequences is destroyed while the uniform-coverage
attribute remains. This shows the symmetric solution is not
an unique solution.

When the initial uncertainty is just the three Gaussian
bumps, the solution is completely different. Unless the
vehicles are reasonably close to the Gaussian bumps, there
will be little to no uncertainty reduction. Therefore we see
the vehicles move straight into the Gaussian bumps in Fig.
4b. Also, comparing the inter-waypoint spacing shows the
vehicles head toward the Gaussian bumps at a higher speed
than when they are inside. As vehicle 2 leaves the main
Gaussian bump and head toward the isolated small Gaussian
bump, we see vehicle 2 speeds up once again in order to
maximize time spent inside Gaussian bump.

Since the P0 in Fig. 3c is the sum of Fig. 3a and 3b, the
converged vehicle waypoint sequences embody characteris-
tics from both. While vehicle 1 concentrates on reducing the
lower-triangular region of the uniform uncertainty and the
main bump, vehicle 2 focuses on the upper-triangular region
and the isolated small bump. Reducing the second largest
bump is divided among both vehicles.

The same experiments are repeated with β = 1, a narrow-
view camera. For brevity only the solution for the P0 in Fig.
3b is shown. The converged waypoint sequences are shown
in Fig. 5. Comparing to Fig. 4b, we once again see both
vehicles speed towards the uncertainties from the origin, and
vehicle 2 speeds toward the isolated uncertainty after leaving
the main uncertainty. However the waypoint sequences in
Fig. 5 are more aggressive and closer to each other. This is
the direct result of a bigger β. Intuitively, since a narrow-
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Fig. 5. Converged vehicle waypoint sequences for Gaussian bumps initial
covariance with β = 1.
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(a) Vehicle waypoint sequences for uniform vari-
ance.
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(b) Vehicle waypoint sequences for Gaussian
bumps.

0 20 40 60 80 100
0

20

40

60

80

100

(c) Vehicle waypoint sequences for uniform back-
ground variance with Gaussian bumps.

Fig. 4. Converged camera vehicle waypoint sequences for all three initial covariances, β = 0.1.

view camera “sees” less, more pronounced maneuvers are
required to cover the domain; furthermore a narrower view
means each vehicle needs to be placed closer together to
achieve any sort of cooperation. Similar behavior also occurs
in the other two P0 experiments.

VI. CONCLUSION AND DISCUSSION

We have demonstrated DAO, our AO algorithm that
combines features from sensitivity-based and uncertainty-
based AO algorithm while incorporating vehicle dynamics.
Generalizations such as nonlinear cost function, nonlinear
model dynamics, and multiple vehicle and sensor types are
shown to easily adopted into the algorithm. We demonstrated
DAO using an example with cameras as sensors. Simulation
results are sensible, suggesting the algorithm is able to
balance between uncertainty reduction and vehicle control
cost.

Storing and propagating the covariance matrix P is com-
putationally intractable for large systems such as a dis-
cretized Navior-Stokes’ equation. For the camera example,
we were able to bypass this issue by assuming a diago-
nal P0 and a special A matrix in the evolution equation.
However in general, such assumption is unrealistic. The
weather and oceanic forecast community uses the Ensemble
Kalman Filter [15], an approximation of the standard Kalman
Filter, for data assimilation in large systems; to this end we
are working on an approximation for DAO that uses the
Ensemble Kalman Filter.

In this paper, the evolution of the sensed systems and
vehicle are in discrete time with propagation time step
coincides with measurement update time interval. This is not
typical in real-world implementation, where measurements
are taken far apart in time, but the propagation time steps of
the sensed system and vehicles are small in order to capture
small-scale dynamics. If the proposed algorithm is used out-
of-the-box, one would need to discretize the systems with
large time steps to match the measurement time intervals.
Doing so would damp out small time scale dynamics and

possibly introduce large propagation errors or numerical
instability. We are working on reformulating DAO in such
a way such that the measurement interval is decoupled with
the system and vehicle propagation.

APPENDIX
DIAGONAL Pk AND Sk FOR THE CAMERA EXAMPLE

For each camera sensor, Hi
k = I and Ri

k is diagonal; thus
the collective Hk and Rk are:

Hk =

I
...
I

 , Rk =

R1
k 0

. . .
0 RN

k

 .

With A = αI and W = 0 in the example, from (8a) the
evolution of P+

k is simply

P+
k+1 = α2P+

k − α4P+
k HT

k (α2HkP+
k HT

k + Rk)−1HkP+
k .

Applying the matrix inversion lemma (A − BD−1C)−1 =
A−1 + A−1B(D − CA−1B)−1CA−1 to the inverse, where
A = Rk, B = Hk, C = HT

k , and D = −(α2P+
k )−1, it

becomes:

P+
k+1 = α2P+

k − α4P+
k HT

k R−1
k HkP+

k

−α4P+
k HT

k R
−1

k Hk(−(α2P+
k )

−1
−HT

k R
−1

k Hk)
−1
HT

k R
−1

k HkP+
k .

By construction HT
k R−1

k Hk =
∑N

i=1(R
i
k)−1 is diagonal;

thus (−(α2P+
k )−1 − HT

k R−1
k Hk)−1 is also diagonal if

P+
k is diagonal. This guarantees P+

k+1 to be diagonal. By
induction Pk would remain diagonal as long as P0 is
diagonal. Similarly, it is easy to proof the adjoint variable
Sk remains diagonal during the adjoint propagation if the
starting condition SK is diagonal.
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