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Abstract— This paper explores 3D path planning for un-
manned aerial vehicles (UAVs) in 3D point cloud environments.
Derivative maps such as dense point clouds, mesh maps,
octomaps, etc. are frequently used for path planning purposes.
A target-oriented 3D path planning algorithm, directly using
point clouds to compute optimized trajectories for a UAV, is
presented in this article. This approach searches for obstacle-
free, low computational cost, smooth, and dynamically feasible
paths by analyzing a point cloud of the target environment,
using a modified connect RRT-based path planning algorithm,
with a k-d tree-based obstacle avoidance strategy and three-step
optimization. This presented approach bypasses the common
3D map discretization, directly leveraging point cloud data.
Following trajectory generation, the algorithm creates way-
point based, closed-loop quadrotor controls for pitch, roll, and
yaw attitude angle as well as dynamics commands for the
UAV. Simulations of UAV 3D path planning based on different
target points in the point cloud map are presented, showing the
effectiveness and feasibility of this approach.

Index Terms— Point cloud maps, Target-oriented, RRT,
UAVs, 3D path planning, Trajectory optimization

I. INTRODUCTION

In the last decades, Unmanned aerial vehicles (UAVs)
have been greatly developed [1]. Nowadays, UAVs, as a
relatively simple but powerful, consumer-leveled and easy-
to-manipulate aerial robotic system, play a more and more
important role in many areas. UAVs are widely used in
inspection, midair collision surveillance [2], unknown envi-
ronment exploration [3], mapping and 3D modeling [4], etc.
To have a better and smarter strategy of performing these
tasks, 3D path planning is a necessary and key technique
in all these. 3D path planning for UAVs can be defined
as the process of finding an optimal and collision-free
path from an initial point to the target point in the 3D
(three-dimensional) workspace while avoiding all the static
obstacles or other mobile agents as well as taking into
account kinematic constraints [5]. It has gained popularity
among researchers around the world due to the development
of affordable equipment like GPS, lightweight laser and
LIDAR (Light Detection And Ranging) scanners, UAVs as
well as the development of new algorithms like simultaneous
localization and mapping (SLAM) [6] and next-best-view
[7].

A huge number of articles have proposed methods and
algorithms to deal with 2D path planning. While in recent
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years, more and more articles extended their path plan-
ning algorithms into 3D environments for UAVs such as
[8][9][10]. Most of the work in this area implement their path
planning algorithms in the lab environment or 3D occupancy
grid maps. However, in the outdoor real world, derivative
maps such as dense point clouds, mesh maps, octomaps, etc.
are frequently used for UAVs path planning purposes. Some
researches have done some correlative work in this area
such as [11][12][13], while others have started to implement
derivative maps in SLAM [14]. As for point clouds, most
of the work uses extremely dense point cloud or transform
point cloud into other forms of maps after post-processing.
The main shortcomings of exiting methods are: first, the
computational complexity will greatly increase as the density
of point clouds grow, situations will get worse in extremely
dense point cloud; second, some detailed information (e.g.
color and position) will be lost during the transformation
from point cloud to other forms of maps.

Fig. 1: The blue trajectory is generated by our path planning
algorithm and the red trajectory is the real UAVs trajectory
after implementing the way-point based close-loop quadrotor
control.

In this paper, we propose a target-oriented 3D path plan-
ning algorithm, directly using sparse point clouds as input
to compute the optimal trajectories for UAVs in outdoor
environment(see fig. 1). Since the algorithm deals with
sample data point cloud directly, sample-based path planning
algorithm like RRT would be a good choice and more
details are introduced in section III. Our algorithm analyzes
a point cloud of the target environment, using a modified
connect RRT-based path planning algorithm. Our approach
utilize a k-d tree based obstacle avoidance strategy and
three-step optimization to searching for collision-free, low
computational cost, smooth, and dynamically feasible paths.
Following trajectory generation, a series of way points are
created along the trajectory by algorithm. By using way-
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point planning, the closed-loop quadrotor control algorithm
will give out desired velocity command ẋ(t), ẏ(t), ż(t),
rotational rate about the vehicle body ωx, ωy, ωz and desired
acceleration for UAVs dynamics. The video of fig. 1 is
available at: https://youtu.be/TwDDlZ-Sr4M

The remainder of this paper is arranged as follows: in
section II, mainly introduce point cloud application and gen-
eration; in section III, mainly build up the point cloud based
target-oriented algorithm and technical details; in section
IV, mainly derive the UAV dynamics and way-point based
control method; in section V, simulations of UAV 3D path
planning based on different target points in the point cloud
maps are presented to show effectiveness and feasibility of
our approach.

II. POINT CLOUD MAP REPRESENTATION

Maps (or environment model) are resources that enable
robots to better perform their tasks [15]. Most robot maps
are very important and used mainly for robots to proceed
localization and navigation [16]. Many robot maps represen-
tation were proposed in the past decades, for examples: gird
maps, polygonal maps, occupancy maps, counter maps, 3D
mesh maps, octomap, point cloud maps. In [16], a map data
representation of environment of a mobile robot performing a
navigation task is specified. Nowadays, as the development of
AI, computer vision, robotics and more powerful embedded
systems, the functionality of the robot is not limited to
positioning and navigation. The robot is also a mobile plat-
form for real-time localization and mapping, target tracking,
pattern recognition and the digital reconstruction of cultural
heritage. Thus, a more informative and interactive 3D map
representation is needed, which is, point clouds.

Fig. 2: Point clouds representing real-world maps (courtesy
of Vid and Eric at Drone Lab@UCSD)

Point clouds is a set of data points in space which contains
color and position information of the real world. It is relative
simple but very powerful and vivid way to represent the real
world as shown in Fig. 2. In Fig. 2, the top left is the scenery
around Jacumba hot springs, CA; the top right is the Jacob
school of engineering, UCSD; the bottom left is the Yosemite
national park; the bottom right is one hospital somewhere in

Columbia. In the following sections, point cloud generation
and applications will be introduced.

A. Point Cloud Generation

Point cloud generally produced by scanner systems, which
measures a large number of data points on the external
surfaces of objects around them. Many researches have
proposed different methods and algorithms to create point
cloud models, for example: stereo cameras [17], LIDAR
systems [18], monocular cameras [19], etc.

Nowadays, As development of UAV and high-resolution
bui-in cameras, high-resolution point large scale cloud map
become possible. More and more researches leverage UAVs
and the build-in cameras as a platform to create large scale
point cloud maps such as in [20][21]. The point clouds in
Fig. 2 are also created by using the aerial images from UAVs.

B. Point Cloud Applications

Recent years, the point clouds are widely used in many
aspects. In geographic information systems, point clouds are
one of the sources used to make digital elevation models of
the terrain [22]. It can also be used in feature extraction [17],
contextual classifications [23], autonomous navigation [24],
etc. In the Drone LAB@UCSD, we used point clouds as a
visualizing way to 3D re-construct cultural heritages [25].
Because of the characteristics and practical significance of
point cloud data, it is meaningful to use point cloud maps
for path planning purposes.

III. TARGET-ORIENTED 3D RRT ALGORITHM

RRT algorithm was first proposed in [26] as a sampling
way of solving the high-dimensional path planning problems.
It has been proven to be probabilistically completed and
computationally efficient [27]. First, RRT algorithm will
randomly sample in obstacle-free space and look for a nearest
point to the sample point from the random tree. Second,
Extend function extends from nearest point an incremental
distance in the direction of the random point to get a
new vertex. Third, if collision detection happens between
new vertex and random point, tree growth is abandoned,
otherwise, the new vertex is added to the tree. Repeating the
above process until the distance between the nearest point
and goal point is less than a threshold, RRT algorithm will
return a feasible path. The advantage of RRT algorithm is
that it does not need to model the system or geometrically
divide the search space. It has a high coverage in the search
space and a wide search scope, so it can explore the unknown
space as much as possible. However, the defects of RRT
algorithm are also obvious. For example, the algorithm is
not deterministic, a narrow passage is also difficult to pass
and the found path is sharp-edged, which can’t be driven
easily.

To improve RRT algorithm, many of its variants are
proposed in the past 20 years, for example: RRT-connect
[28], RRT* [29], Bidirectional RRT* [30], RRT*-Smart [31],
SRRT* [32]. These variants improve the efficiency and
rate of convergence, and solve the problem of asymptotic
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optimization. However, for UAVs autonomous control, these
pure algorithms are not enough since the dynamics constrains
of vehicles are not considered. In [33] a closed-loop RRT
(CL-RRT) is proposed to involve non-holonomic constraints
of the four-wheel vehicle dynamics. In [34] the CL-RRT
idea was improved and implemented on quadrotor UAVs.
Although the UAV non-holonomic constraints and RRT-
based controller design method is provided, the Simulation
environment is too ideal and final path is not smooth enough
and not cost optimal.

This paper proposes a point cloud-based target-oriented
3D RRT (PT-RRT) algorithm that obtains obstacle-free,
smooth, dynamically-feasible trajectories in real world and
in real time. In the following sections, subsection A intro-
duces the core algorithm description and overall workflow;
subsection B introduces the point cloud map analysis to
determine step size before algorithm running; subsection C
introduces the obstacle avoidance strategy in point cloud
maps; subsection D introduces three-steps optimization to
get a smooth trajectory.

A. Algorithm Design and Workflow

PT-RRT algorithm we develop is a RRT-connect based
path planning algorithm. Some modifications is made in
RRT-connect. In order to be target-oriented and to reduce
computational cost, we modify the extension condition in
“EXTEND tree function” as shown in Algorithm 1.

Algorithm 1 EXTEND(T,x)

1: FLAG ← 0; i← 0;
2: if COLLISIONDETECT = NOCOLLISION then
3: xrand ← x
4: else
5: xrand ← Sample(i)
6: end if
7: xnearest ← NEARESTNODE(T,x)
8: xnew ← STEER (xnearest ,x)
9: if COLLISIONDETECT = NOCOLLISION then

10: V ← {xnew}; E←{xnew,xnear}
11: T ←{V, E}
12: if |xnew− x|< StepSize then
13: return FLAG = 1
14: end if
15: end if
16: return T , FLAG

Fig. 3 shows the overall workflow of our algorithm. Dotted
boxes specify the differences between our algorithm and
RRT-connect algorithm. Point cloud maps analysis and three-
step optimization are added to our algorithm.

B. Point Cloud Map Analysis

According to the analysis in previous part, it is difficult
to do path planning in a very sparse point cloud map. In
the PT-RRT algorithm, given a point cloud map, analysis is
necessary before our algorithm runs.

Fig. 3: PT-RRT algorithm workflow

Point cloud density is one of the most important properties.
In the map analysis, point cloud density has to be maintain at
an acceptable level for the application of UAV path planning.
According to [35] and [36], point cloud density δ is classified
as in TABLE I. In the outdoor space, UAV 3D path planning
can successfully run in sparse point cloud maps where its 0.5
< δ < 1, and lower than is this level, it may be problematic.
Jacob school of engineering of UCSD will be used as the
point cloud environment in the simulation. The δ of this
model is 0.597 ± 0.02 pts/m2.

TABLE I: Point Cloud Density Classification

Density level δ (pts/m2) Applications

Sparse point clouds [0.5,1) Normally collected for large scale
digital height models.

Low density point
clouds

[1,2) For flood modelling applications.

Medium density point
clouds

[2,5) Suitable for satisfying most us-
ages.

High density point
clouds

[5,10) For capturing the details of build-
ings.

Extremely dense point
clouds

[10,∞) For capturing more and all the
details.

The point cloud analysis algorithm to calculate δ is
shown in Algorithm 2. To reduce computational complexity,
algorithm 3 randomly selects 1% sample of the whole point
cloud data as the sub data to analyze maps, which is in Line
1. In Line 4, “Find Nearest Neighbor” (FINDNN) function
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returns back the Euclidean distance between the K nearest
neighbor points to the ith subdata. In Line 6, “Find Nearest
Neighbor in Radius” (FINDNR) function returns back the
index of the nearest neighbor to the ith subdata in radius.
The principle of FINDNN and FINDNR will be discussed
in detail in next section C. In Line 9, “Surface Density”
(SURFDENSITY) function returns the point cloud density
based on average number of index indexnumber and radius. In
Line 13, “Statistical Analysis” (SA) function returns back
the step size for target-oriented RRT algorithm. And to
ensure safety, 120% offset is added to StepSize. In Line 14,
“Configuration Space Analysis” (CSA) function returns back
the configuration space CSpace for UAV, which includes the
x,y,z limitation of the UAV flight space.

Algorithm 2 POINTCLOUDANALYSIS(ptClMap)

1: subdata ← 1%RANDOMSAMPLE(ptClMap);
2: K ← {NeighborNumber}; r ← {radius};
3: for i =1...subdata.Size() do
4: dists ← FINDNN(subdata(i),ptClMap,K)
5: distsmin(i) ← MIN(dists)
6: index ← FINDNR(subdata(i),ptClMap,r)
7: indexnumber(i) ← index.Size()
8: end for
9: ptClDensity ←SURFDENSITY(indexnumber,r)

10: if ptClDensity ≤ LowerBound then
11: return FAIL
12: else
13: StepSize ← SA(distsmin)
14: CSpace ← CSA(ptClMap)
15: return StepSize,CSpace
16: end if

C. Obstacle Avoidance Strategy

In path planning, designing a feasible path is the first
priority task. The maps environment that most path plan-
ning algorithms are dealing with are all full information
geometrical maps like grids maps, occupancy maps, 3D mesh
maps and so on. Under the condition that assuming all the
geometry information is known, it is easier to apply obstacle
avoidance strategy.

In a set of sampling data points like point cloud, things will
become more complicated. The challenges of path planning
in point cloud maps are obvious as discussed in previous
point cloud chapter 2. Researcher normally will not deal with
point cloud environment directly. A tensor voting framework
is proposed in [11] to transform point cloud into a promising
outcome for application of 3D path planning. Ortherwise,
a direct way to do global path planning on point cloud
maps is using an extremely dense point clouds as in [13].
According to the test dataset parameters table in [13], its
point cloud density is ≥ 970 pts/m2. Such point cloud is
not just computationally expensive, but also too difficult for
SLAM to realize under the current technology. Thus, a novel
collision avoidance strategy is proposed in this paper.

Algorithm 3 COLLISIONDETECT(xcurr,xnext , ptClMap)

1: Status ← NOCOLLISION;
2: if OUTOFRANGE(xcurr, ptClMap) = TRUE then
3: return Status ← COLLISION
4: end if
5: xmid ← INTERP (xcurr,xnext )
6: if CHECKPOINT(xmid , ptClMap)=HIT then
7: return Status ← COLLISION
8: end if
9: return Status

10: function CHECKPOINT(xmid , ptClMap)
11: Sa f eDist ← {S};
12: for i = 1...K do
13: if FINDNN(xmid , ptClMap, i) ≤ S then
14: return HIT
15: end if
16: end for
17: end function

The collision detection algorithm is shown in Algorithm
3. In Line 2, “out of range” (OUTOFRANGE) function
checks whether current point x is outside the map. In the
CHECKPOINT function, a safety distance S is specified to
check if the current point is potentially about to hit the
obstacle. In the algorithm, the value of S is based on StepSize
we got from Algorithm 2. A reference value is given in
equation 1.

S = (0.5 or 0.8) × StepSize (1)

In the left subfigure of Fig. 4, node 3 actually “sees” the
goal point and try to expand a random new node on that
direction (gray dashed line). The algorithm will calculate
distances between the nearest point cloud neighbors to that
node and check if it is in the ball-shape safe region, which is
defined by S. Eventually, the node on dashed line is discarded
and node 4 is added to the tree. In the right subfigure of
Fig. 4, same rules are applied and since CHECKPOINT
function returns “no hit” between node 5 and the goal
point, node 6 is added to the tree on that direction. In

Fig. 4: Obstacle avoidance strategy 2D presentation

the CHECKPOINT function, FINDNN function is the key
to determine if current point potentially hits the obstacle.
FINDNN function and FINDNR function (in the previous
section B) can be regarded as feature point matching query.
Normally, there are two types of feature matching operators:
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one is the linear scanning method, which compares the
distance between the points in the dataset and the query
points one by one, that is also known as exhaustive; another
is to index the data and then match it quickly. One kind of
representative index tree for the second method is kd-Trees
and both FINDNN function and FINDNR function are all
based on kd-Trees search algorithm.

Kd-Trees is a binary data structure inveted in 1970s by
Jon Bentley [37]. Kd-Trees algorithm can separate into two
parts[38]: first part is the algorithm of constructing the kd-
tree; second part is algorithm of searching for the nearest
neighbor. According to the complexity analysis in [38], the
time complexity of kd-trees nearest neighbor algorithm is
O(n1−1/d + k), where d is the d-dimension and k is the k
nearest neighbors need to retrieve. It is far more efficient
than exhaustive O(nd) and more flexible than octrees.

1) down sample optimization: Down sample starts from
the initial point, and keeps checking the collision status
between next vertex and previous break point along the
connected tree. In Fig. 5, the orange trajectory is the outcome
after down sample optimization. The down sample algorithm
is shown in Algorithm 4.

Algorithm 4 DOWNSAMPLE(Path)

1: Pathbreak ← {Path(1)};
2: for i =2...Path.size do
3: dis(i) ← EURDIST(Pathbreak,Path(i));
4: if dis(i)> dis(i−1) OR dis(i)> 0 then
5: if COLLISIONDETECT = COLLISION then
6: indxnew ← {i−1}
7: Pathbreak ← {Path(i−1)}
8: end if
9: end if

10: end for
11: Path ← Path.indxnew
12: return Path

2) Up Sample Optimization: After down sample, com-
pared with connect-tree path, the trajectory we get is locally
shorter but it is not short enough since the down sample
trajectory is fully based on connected tree, which is not
close enough to obstacles especially at the corner. Up sample
generates more sample points that are closed to the nearest
obstacle and its safe boundary compared with down sample
trajectory which will further shorten the trajectory. In Fig. 5,
the green line is the outcome after up sample optimization.
The up sample algorithm is shown in Algorithm 5.

3) B-Spline Curve Optimization: To make sure that the
final trajectory generated by PT-RRT algorithm is smoother,
this paper uses cubic B-Spline Curves to smooth the final tra-
jectory. In [39] properties of B-spline curves are described to
show the advantages of B-spline curves to smooth trajectories
in path planning compared with Bezier curve. According to
lecture [40], a B-spline curve P(t) is defined in equation 2:

P(t) = ∑
n
i=0 PiNi,k(t) (2)

where,

Algorithm 5 UPSAMPLE(Path)

1: dist ← {0}; iter ← 1;
2: for k = 2...Path.Size() do
3: dist(k) ← EURDIST(Pathk,Pathk−1)
4: dist(k) ← {distk +distk−1}
5: end for
6: while iter ≤ itermax do
7: R1 ← RANDOMSAMPLE(distend)
8: R2 ← RANDOMSAMPLE(distend)
9: if S2 ≤ S1 then

10: SWAP(R1,R2)
11: end if
12: for k = 2...Path.Size() do
13: determine index i:=k−1 if dist(k) > R1
14: end for
15: for k = (i+1)...Path.Size() do
16: determine index j:=k−1 if dist(k) > R2
17: end for
18: if j ≤ i then jump to the next iteration
19: end if
20: α ← INTEPL(disti,disti+1,Pathi,Pathi+1)
21: β ← INTEPL(dist j,dist j+1,Path j,Path j+1)
22: Pairwise CollisionDetect in {Pathi,α,β,Path j+1}
23: if ANY(Line 22) = COLLISION then
24: jump to the next iteration
25: end if
26: Path ← {Pathi,α,β,Path j+1}
27: iter ← {iter+1}
28: end while
29: return Path,ψ

• The control points Pi = {1,2,3...n} are given by up
sample optimization algorithm.

• k is the order of the polynomial segments of the B-spline
curve, and in our case k = 3.

• The Ni,k(t) are the “normalized B-spline blending func-
tions”. They are described by k and a non-descending
sequence of breaking points ti = {t0, ..., tn+k}.
The Ni,k(t) are described in equation 3, and starts with
equation 4.

Ni,k(t) =
t−ti

ti+k−1−ti
Ni,k(t)+

ti+k−t
ti+k−ti+1

Ni+1,k−1(t) (3)

Ni,k(t) = {
1,i f ti≤t≤ti+1
0,otherwise (4)

Since using third-degree B-spline curves, it should be
noted that the generated trajectory is 2nd-order continuous
and it is continuous in acceleration. Compared with Bezier
curves, B-spline curves are more flexible: by adding con-
trolling points locally to the line segment, we can locally
optimize the final trajectory. After finishing fitting, the col-
lision detection is needed for the generated trajectory. When
a trajectory segment collides with an obstacle, the nearest
control point to the collision point needs to be located and re-
fitted after interpolation. The midpoint between the located
control point and the previous control point is selected as
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the interpolation point. Collision detection is carried out
after each fitting until an obstacle-free safety trajectory is
generated. In the Fig. 5, the smooth blue curve line is the final

Fig. 5: Trajectory optimization and interpolation process

trajectory after B-spline optimization. Subplot (a) shows that
the B-spline optimal trajectory may be able to hit the obstacle
and subplot (b) shows that the outcome after interpolation
process. After one red control point is interpolated into the
trajectory segment, the re-fitted B-spline optimal trajectory
could avoid bumping into the obstacle. The safe region is a
virtual space around the obstacles where RRT sample points
cannot appear in, and it is defined by S.

IV. WAY-POINT BASED CLOSED-LOOP QUADROTOR
CONTROL

According to the method in [41], a quadrotor system has
the differential flatness property, makes it possible to reduce
optimal trajectories to a sequence of 3-D position and yaw
angle and their derivatives. And also, as presented by Hehn
et al. [42], trajectory feasibility constraints includes vehicle
dynamics and input constraints, in which control inputs can
be calculated from the generated trajectory. In this section,
we adapt ideas from these two papers and design the way-
point based closed-loop control.

A. Way-Point Based Closed-Loop Control
The way-point based closed-loop control design is shown

in Fig. 6. The control input here is the desired trajectory
state Trastate ∈ R13, which is given in equation 5. The output
state from quadrotor dynamics is the quadrotor state xstate ∈
R13, given in equation 6. In order to make the dimensions
consistent, both Trastate and xstate have to transform into a
middle quadrotor state Qstate ∈ R12 before feeding in the
quadrotor controller, given in equation 7.

Fig. 6: Way-point based closed-loop control block diagram

Trastate =
[

pxyz νxyz axyz elxyz ψ̇
]T ∈ R13 (5)

xstate =
[

pxyz νxyz qwxyz ωpqr
]T ∈ R13 (6)

Qstate =
[

pxyz νxyz elxyz ωpqr
]T ∈ R12 (7)

where,
pxyz =

[
x y z

]
, is the position in world coordinates;

νxyz =
[

ẋ ẏ ż
]

, is the velocity in world coordinates;
axyz =

[
ẍ ÿ z̈

]
, is the acceleration in world coordi-

nates;
elxyz =

[
φ θ ψ

]
, is the Euler roll, pitch and yaw;

ωxyz =
[

p q r
]

, is the angular velocity around body
xyz-axis;

qwxyz =
[

qw qx qy qr
]

, is the quaternion.
The state transformer will transform quaternion qwxyz into

Euler angle elsyz, and transform Trastate into quadrotor state.
The whole control system has to be initialized every time
before system runs. The trajectory generator will first give
out an initial trajectory state Trastate and quadrotor state xstate
will be assigned by Trastate in the initialization.

B. Quadrotor Controller for Position Control

The inputs of controller are desired quadrotor middle
state Qdes

state and current quadrotor middle state Qstate. The
desired middle state is Qdes

state calculated based on desired
trajectory state Trastate. The current quadrotor middle state
Qstate is calculated from the quadrotor current state xstate The
controller is given in equation 8, 9, 10, 11.

Fig. 7: Controller diagram for position control

axyz = ades
xyz +Kν(ν

des
xyz −νxyz)+Kp(pdes

vxyz− pxyz) (8)


φ = 1

g (axsinψdes−aycosψdes)

θ = 1
g (axcosψdes−aysinψdes)

ψ = ψdes
(9)

F = (mg+ma)Rīz (10)

M = Ixyz(Kvm(ω
des
xyz −ωxyz)+Kpm(eldes− el)) (11)

The outputs of quadrotor controller are F,M and xstate.
These outputs will be feeding into the quadrotor dynamics
plane to solve for the state space equations.
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V. SIMULATION AND RESULT DISCUSSION

In this paper simulation tests for three different targets are
involved. Three simulations are all based on a real world
point cloud map, which is the Jacob School of Engineering
at UCSD. The parameters of point cloud dataset are given in
TABLE II. The dataset is provided by Drone Lab@UCSD.

TABLE II: Test Dataset Parameters

Dataset Jacob School of Engneer-
ing@UCSD

3D model .ply format size 10.8mb

Number of points 405934

Point cloud density 0.597±0.01pts/m2

Actual size (270×270×52)m

According to point cloud analysis, the histogram of the
distance and number of the nearest neighboring points of
the point cloud is shown in figure 8. The SA function gives
out the step size for PT-RRT algorithm: StepSize = 5m, and
safety distance: Sa f eDist = 3m.

Fig. 8: Statistical analysis of test dataset

The simulation is running in MATLAB software, on a per-
sonal laptop with i5-9300H 2.4GHz processor, 8G memory.
Simulation parameters settings are shown in TABLE III. We
design three simulation tasks based on different initial and
target points in order to show target orientation, three-step
optimization and interpolation process of our algorithm.

TABLE III: Simulation Setting

No. Description
Initial point Goal point Verification

1 (230,120,95) (150,25,90) Target orientation

2 (230,120,95) (90,260,95) Up-Sample Optimization

3 (158,150,96) (175,185,100) B-Spline Optimization

In the Fig. 9, Fig. 10, and Fig. 11, blue and red star dots
are the vertexes in tree 1(starts from initial point) and tree
2(starts from target point); the red polyline is connected tree

1 and 2; the yellow line is the down sample trajectory, the
green line is the up sample trajectory, and the blue curve is
the final trajectory. In Fig. 11, the top right and left pictures
show the comparison between no interpolation process and
after interpolation process.

Fig. 9: test1, PT-RRT run time: 10.55s

Fig. 10: test2, PT-RRT run time: 14.30s

Fig. 11: test3, PT-RRT run time: 9.88s

Fig. 12, Fig. 13, Fig. 14 show way-point close-loop
quadrotor flight control simulation running in test 1, test
2, test 3, the blue line is trajectory generated by PT-RRT
algorithm, the red line is the real quadrotor flight trajectory
with the respect of quadrotor dynamics constrains. This
simulation shows that the effectiveness and feasibility of our
algorithm.
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However, there indeed in some cases that proposed 3D
path planning algorithm may fail. For instance, if the point
cloud map we used is incomplete, in another words, if the
point cloud map couldn’t capture and whole feature surface
of the obstacle and there exists cavities on the surface, then
the trajectory generated by the 3D path planning algorithm
may enter the obstacle. So in the future, combining my
algorithm and SLAM will be a promising way of solving
this problem.

Fig. 12: UAV flight control simulation for test 1, flight run
time t=24.5s

Fig. 13: UAV flight control simulation for test 2, flight run
time t=39.6s

Fig. 14: UAV flight control simulation for test 3, flight run
time t=12.4s

VI. CONCLUSION AND FUTURE WORK

This paper proposes a RRT based 3D path planning algo-
rithm and a way-point based closed-loop quadrotor control
for UAVs in 3D point cloud environment. The trajectory
generated by our algorithm is obstacle free, smooth, target-
oriented, computationally low-cost, and dynamically feasible
for UAVs. The closed-loop quadrotor control treats 3-D
position and yaw angle and their derivatives as control inputs,
satisfying the dynamics constraints while following the way
points. The simulations for different target points show the
effectiveness and feasibility of our algorithm and control
method.

For future work, the author plans to run experimental
testing using real quadrotor with GPS, cameras, IMU and
altimeter. In the outdoor space, more noise will be involved.
We will check how good is our trajectory planning in real
world and how robust is our control system will be.

ACKNOWLEDGMENT

This work is supported by the Dron Lab@UCSD and the
Coordinated Robotics Lab@UCSD. Zhaoliang would like to
thank his lab mates Vid Petrovic and Eric Lo for their ideas
and contributions in the point cloud maps.

REFERENCES

[1] J. F. Keane and S. S. Carr, “A brief history of early unmanned aircraft,”
Johns Hopkins APL Tech. Dig. Applied Phys. Lab., vol. 32, no. 3, pp.
558-571, 2013.

[2] C. Fu, A. Carrio, M. Olivares-Mendez, R. Suarez-Fernandez, and
P. Cam- poy, “Robust real-time vision-based aircraft tracking from
Unmanned Aerial Vehicles,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on, 2014, pp. 5441-5446

[3] C. Fu, A. Carrio, and P. Campoy, “Efficient visual odometry and
mapping for Unmanned Aerial Vehicle using ARM-based stereo vision
pre-processing system,” in Unmanned Aircraft Systems (ICUAS), 2015
International Conference on, 2015, pp. 957-962.

[4] F. Remondino, L. Barazzetti, F. Nex, M. Scaioni, and D. Sarazzi, “UAV
PHOTOGRAMMETRY FOR MAPPING AND 3D MODELING,” vol.
XXXVIII, no. September, pp. 14-16, 2011.

[5] L. Yang, J. Qi, D. Song, J. Xiao, J. Han, and Y. Xia, “Survey of Robot
3D Path Planning Algorithms,” J. Control Sci. Eng., vol. 2016, 2016.

[6] H. Durrant-Whyte and T. Bailey, ”Simultaneous localization and map-
ping: part I,” in IEEE Robotics and Automation Magazine, vol. 13, no.
2, pp. 99-110, June 2006.

[7] V. Zielke, “Design and implementation of Next-Best-View algorithms
for automatic robotic-based ( dis ) assembly tasks,” Abschlussarbeit
(Diplom), 2016.

[8] S. Liu, N. Atanasov, K. Mohta and V. Kumar, ”Search-based motion
planning for quadrotors using linear quadratic minimum time control,”
2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Vancouver, BC, 2017, pp. 2872-2879.

[9] S. Liu, K. Mohta, N. Atanasov and V. Kumar, ”Search-Based Motion
Planning for Aggressive Flight in SE(3),” in IEEE Robotics and
Automation Letters, vol. 3, no. 3, pp. 2439-2446, July 2018.

[10] H. Dai and Q. Liu, “EB-RRT * based Navigation Algorithm for UAV
Dai Hongliang , Liu Qinglin,” in 2017 3rd International Forum on
Energy, Environment Science and Materials (IFEESM 2017), vol. 120,
no. Ifeesm 2017, pp. 1313-1329.

[11] F. Gao and S. Shen, “Online quadrotor trajectory generation and
autonomous navigation on point clouds,” SSRR 2016 - Int. Symp.
Safety, Secur. Rescue Robot., pp. 139-146, 2016.

[12] M. Liu, “Robotic online path planning on point cloud,” IEEE Trans.
Cybern., vol. 46, no. 5, pp. 1217-1228, 2016.

[13] R. Fedorenko, A. Gabdullin, and A. Fedorenko, “Global UGV Path
Planning on Point Cloud Maps Created by UAV - IEEE Conference
Publication,” 2018 3rd IEEE Int. Conf. Intell. Transp. Eng., pp. 253-
258, 2018.

[14] Fioraio, Nicola et al. “Realtime Visual and Point Cloud SLAM Nicola
Fioraio Willow Garage.” (2011).

[15] R. B. Rusu, N. Blodow, Z. Marton, A. Soos, and M. Beetz, “Towards
3D object maps for autonomous household robots,” IEEE Int. Conf.
Intell. Robot. Syst., pp. 3191-3198, 2007.
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