
Chapter 1

Cybernetics

Cybernetics is the science of communications and automatic control systems in machines and living things.
For the desired degree of responsiveness and reliability in cyber-physical systems, the e�ective coordination
of such machines generally requires a certain degree of edge computing (decentralized, calculated on the
machines themselves). Cloud computing (centralized on large remote clusters of computers, aka servers),
together with fast wired (§3.1.2) or wireless (§3.1.3) communication protocols, o�en complements edge comput-
ing for complex coordination tasks. We thus begin this study with a survey of the essential ideas and modern
technologies that underlie the remarkable performance of both small computers and large servers today.
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1.1 Bits, bytes, integers, floats, and parity
A brief review of digital logic, storage, and communication forms our initial focus.

1.1.1 CMOS vs TTL; binary & hexadecimal
The starting point for the binary (two-state) digital logic used in modern CPUs is the binary digit (bit), a
signal voltage that is either logical low (somewhere near ground), logical high (somewhere near VDD), or
quickly transitioning from one of these binary states to the other (in between the clock pulses that coordinate
the computations on the CPU). Di�erent MCUs and peripherals, and indeed di�erent regions within a single
MCU, use di�erent values for VDD. Within CPU cores, low-voltage complementary metal oxide semiconductor
(CMOS) technology is used, with a VDD of one of the following: {3.3V, 2.5V, 1.8V, 1.5V, 1.2V, 1.0V, 0.9V, . . .},
with signals in the range (0, VDD/3) interpreted as logical low, and (2VDD/3, VDD) interpreted as logical high.
To improve the performance of the ever-decreasing transistor sizes within MCUs, the value of VDD used within
CPU cores has been gradually decreasing over the years. Note also that most modern MCUs incorporate one
or more low-dropout (LDO) regulators to provide very stable power at the precise voltage(s) necessary for the
MCU to function properly.

Between the MCU and other components (elsewhere on the motherboard, on daughterboards, or on the
electromechanical system itself), transistor-transistor logic (TTL) is o�en1 used, with the range (0, 0.8V) inter-
preted as logical low, and (2V, VCC) interpreted as logical high, where VCC is either 3.3V or 5V. MCUs with 3.3V
TTL inputs & outputs (i/o) can thus communicate seamlessly with 5V TTL peripherals; however (warning!)
this only works if those pins set as inputs on the 3.3V TTL device are rated as 5V tolerant, which must be
checked. If they are not, a level shi�er must be used between the two connected devices.

A collection of 4 bits is called a nibble, which represents a number between 010 (a.k.a. 00002 or 016) and
1510 (a.k.a. 11112 or F16), where the subscript indicates the base of the number system used, with 2 denoting
binary, 10 denoting decimal, and 16 denoting hexadecimal notations. Similarly, a collection of 8 bits is called a
byte, which represents a number between 010 (a.k.a. 0000 00002 or 0016) and 25510 (a.k.a. 1111 11112 or FF16).
Many di�erent notations are used to indicate the representation of numbers with di�erent bases, including,
for example, the representation of 184 in decimal (which is commonly indicated with no ornamentation) as
0b10111000 or 1011 1000b in binary, and as 0xB8 or #B8 in hexadecimal.

A collection of 3 bits may be used to represent a number between 08 (a.k.a. 0002) and 78 (a.k.a. 1112), referred
to as an octal (base-8) number. Three octal digits (that is, 9 bits, denoted rwxrwxrwx) are used by the linux
chmod command (see §2.2.3.2) to set {read, write, execute} permissions on a file for the {owner, group, world}.

Ternary (three-state) logic is also sometimes used in creative ways in embedded systems, particularly with
arrays of bu�ons and LEDs (see §6.13). That is, a single binary (logical 0 or 1) output signal on some pin can
also be set as an input on that device, which e�ectively puts it into a third state Z, known as high impedance.
Se�ing such a pin as a logical 0 output can, for example, drive an LED connected (through a resistor) to VCC ,
whereas se�ing it as a logical 1 output can drive a di�erent LED connected (through a resistor) to GND, and
se�ing such a pin to the high impedance state Z (that is, se�ing it as an input) turns both connected LEDs o�.

Using multi-level cell (MLC) flash memory technology, four-state [two-bit] logic is commonly used for
each individual storage symbol, and both eight-state [three-bit, a.k.a. triple-level cell (TLC)] and even sixteen-
state [four-bit, a.k.a. quadruple-level cell (QLC)] logic has been explored, as discussed further in §??.

1A notable exception is that daughterboards for the 96boards family of motherboards operate i/o at CMOS signal levels of 1.8V.
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SI prefix name kilo- mega- giga- tera- peta- exa- ze�a- yo�a-
SI prefix symbol k M G T P E Z Y
decimal power 103 106 109 1012 1015 1018 1021 1024

binary prefix name kibi- mebi- gibi- tebi- pebi- exbi- zebi- yobi-
binary prefix symbol Ki Mi Gi Ti Pi Ei Zi Yi

binary power 210 220 230 240 250 260 270 280

ratio 1.024 1.0486 1.0737 1.0995 1.1259 1.1529 1.1806 1.2089

Table 1.1: Decimal powers, as used in SI, versus binary powers, as used in characterizing computer systems.

uint8_t int8_t uint16_t int16_t uint32_t int32_t uint64_t int64_t
0 : 255 – 128 : 127 0 : 65,535 – 32,768 : 32,767 0 : 232 – 1 – 231 : 231 – 1 0 : 264 – 1 – 263 : 263 – 1

Table 1.2: Ranges covered by N = 8, 16, 32, and 64 bit binary representations of unsigned and signed integers.

A large number of bits (abbreviated with a lowercase b) or bytes (abbreviated with an uppercase B) is indi-
cated using a prefix corresponding to a binary power that is close to, but not quite the same as, the correspond-
ing decimal power used in the International System of Units (SI; see §10.1.1-10.1.2), as indicated in Table 1.1.
Thus, unambiguously, a Kib is 1024 bits, a KiB is 1024 bytes, a MiB is 1,048,576 bytes, a GiB is 1,073,741,824
bytes, etc. �ite unfortunately, as of 2021, SI prefixes (representing decimal powers) are still used quite o�en
for the nearby binary powers in the computer literature, commonly denoting 1024 bits as a kb (or Kb), 1024
bytes as a KB, 1,048,576 bytes as a MB, 1,073,741,824 bytes as a GB, etc. We eschew this (sloppy) dominant
paradigm in this text, simply by inserting an “i” as the second character of each prefix when denoting storage
capacities, communication speeds, etc, as the percentage uncertainty that is introduced by doing otherwise
increases as you move to the right in Table 1.1 (which is certainly the trend when quantifying storage capaci-
ties and communication speeds as time goes forward!), and encourage hardware manufacturers, retailers, tech
reporters, book/wikipedia authors, researchers, instructors, bloggers, and others to do the same.

1.1.2 Integer & fixed-point representations, and their (fast) arithmetic in ALUs
Integer arithmetic on MCUs is usually formed using binary representations of integers that are N = 8, 16,
32, or 64 bits long, and either unsigned or signed, covering the (decimal) integer ranges indicated in Table 1.2.

When storing or transmi�ing a multiple-byte word (containing one or more integers, fixed-point real num-
bers, or floating-point real numbers; see §1.2) in a computer, the individual bytes stored (or, transmi�ed over a
communication channel) that make up such a word can be ordered using one of two di�erent conventions:

• with the big endian convention, the “big end” (that is, the most significant byte, aka MSB, in the sequence)
is stored first (at the lowest storage address), or transmi�ed first, whereas
•with li�le endian convention, the “li�le end” (the least significant byte, or LSB) is stored or transmi�ed first.

For example, the two bytes (16 bits) required for representing the integer A2F316 is stored as A216 at memory
address a and F316 at memory address a+ 1 using the big-endian convention, and the same integer is stored as
F316 at memory address a and A216 at memory address a+ 1 using the li�le-endian convention. Within a byte,
the order of the bits is usually stored the same (most significant bit to least significant bit) in all computers,
regardless of how the bytes are arranged; however, the terms big endian vs li�le endian may also be used to
characterize the order in which individual bits are transmi�ed over a communication channel.
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Figure 1.1: Periodic number line useful in visualizing two’s complement notation.

Signed representations of negative integers are formed using the two’s complement convention, given
by simply inverting the N bits of the corresponding (unsigned) integer (in binary form) and adding one. This
e�ectively scoots the set of all 2N−1 negative integers included in the representation to the right of the 2N−1 non-
negative integers on a number line ordered by the raw (unsigned) binary number, as illustrated for the N = 4
case in Figure 1.1. Adding 1 (that is, 0. . . 01) to any number on this periodic number line shi�s it to the right
by one, modulo 2N (that is, moving o� the right end of the line wraps back around on the le� end). Similarly,
adding −1 (that is, 1. . .11) to any number on this line corresponds to shi�ing it to the le� by one, modulo 2N

(that is, moving o� the le� end of the line wraps back around on the right end). Thus, normal unsigned binary
addition on this number line, ignoring binary overflow (that is, ignoring the process of wrapping around on
the ends of the line) corresponds to the addition of positive and negative integers in this two’s complement
convention, as long as integer overflow (that is, exceeding the range indicated in Table 1.2, and thus crossing
the halfway point on the number line, indicated by the vertical dashed line in Figure 1.1 in the N = 4 case)
is not encountered (which can be checked for and flagged). All modern CPU cores include (fast) hardware
implementations (by an arithmetic logic unit, or ALU) of the {+,−,×} operations on integers represented
in such binary forms, which (remarkably) generally execute in a single clock cycle.

Binary representations of unsigned or signed integers, and the fast (ALU) implementations of {+,−,×}
acting thereon, can be applied directly to real (rational) numbers with a fixed (specified in advance) number
of binary digits a�er the (implied) decimal point. This representation of fixed point real numbers, using N
bits, is referred to as Q format, and is commonly denoted UQm.n [a.k.a. UQn] for unsigned real numbers,
and Qm.n [a.k.a. Qn] for signed real numbers (in two’s complement format), where n indicates the number
of binary digits a�er the decimal point, and (optionally) m indicates the number of binary digits before the
decimal point, with m+n = N . Addition and subtraction of two fixed-point real numbers [once aligned to the
same Q format, so they have the same number of binary digits a�er the (implied) decimal point] is the same
as integer addition and subtraction using binary representations; again, integer overflow must be checked for
and flagged if it occurs. Multiplication of two fixed-point real numbers is, conceptually, the same as integer
multiplication using binary representations. In addition, note that the product of a Qm1.n1 real number and a
Qm2.n2 real number results in a Qm.n real number with m = m1 +m2 and n = n1 + n2; the result must thus
generally be both rounded (reducing the number of significant digits kept a�er the decimal point) and checked
for overflow in order to fit it into another N bit Q format representation. As much as possible, scaling all fixed-
point real variables in a problem (both before and a�er the necessary sums, di�erences, and products) to be
O(1) over the entire operational envelop of the electromechanical system under consideration is particularly
convenient, using, e.g., the UQ1.7 (in the range [0, 1.99219]), Q1.7 (in the range [−1, 0.99219]), UQ1.15 (in the
range [0, 1.9999695]), and Q1.15 (in the range [−1, 0.9999695]) formats2. Note that:

• To convert a real number r into Qm.n format, multiply r by 2n, round to the nearest integer, and convert this
integer to two’s complement binary form.
• To convert a number b in Qm.n format back to a real number, consider b as a regular binary number (with no
decimal point), convert this binary number (in two’s complement form) to an integer, and divide by 2n.

2In general, the range of a UQm.n number is [0, 2m − 1/2n], and the range of a UQm.n number is [−(2m−1), 2m−1 − 1/2n].
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1.1.3 Floating-point representations, and their (fast) arithmetic in FPUs

It is, of course, significantly easier to program, especially at the prototyping stage, using floating-point arith-
metic [that is, using real numbers represented with a sign bit, an exponent, and a significand (a.k.a. man-
tissa)], so that the scaling of the real numbers can be managed by the CPU core on the fly, and a very wide
range of scalings can be encountered without loss of precision. Floating point real numbers, as defined by the
ubiquitous IEEE 754 standard, are represented with:
• N = 16 bits (“half precision”), with 1 sign bit, 5 bits defining the exponent, and k= 10 bits defining the sig-
nificand, representing numbers from±6.10× 10−5 to±65504 with log102k+1 = 3.3 decimal digits of precision,
• N = 32 bits (“single precision”), with 1 sign bit, 8 bits defining the exponent, and 23 bits defining the signifi-
cand, representing numbers from ±1.18× 10−38 to ±3.4× 1038 with 7.2 decimal digits of precision, or
• N = 64 bits (“double precision”), with 1 sign bit, 11 bits defining the exponent, and 52 bits defining the
significand, representing numbers from ±2.23× 10−308 to ±1.80× 10308 with 16 decimal digits of precision.

For the feedback control of electromechanical systems, single precision is more than enough, and in most cases
half precision is su�icient (if the FPU implements it; as of 2021 most do not, though Armv8.1-M introduces
hardware support for half-precision floats to the ARM Cortex M family, starting with the Cortex M55).

In addition to nonzero normal numbers (that is, floating-point numbers that can be represented in half,
single, or double precision as defined above, without leading zeros in their significand), various special values
are represented and handled correctly by FPUs implementing the IEEE 754 standard, specifically:
• signed zeros {+0,−0} [with (+0) = (−0) for the purpose of comparisons],
• signed infinities {+∞,−∞} [e.g., 1/(+0) = (+∞), 1/(−∞) = (−0), (+∞) ∗ (−2) = (−∞), . . . ],
• subnormal numbers [that is, smaller floating-point numbers that can be represented in half, single, or double
precision at reduced precision, with leading zeros in their significand],
• Not a Numbers (NaNs), handling indeterminant forms [e.g., (±∞)× (±0), (±0)/(±0), (+∞) + (−∞), . . . ],
real operations with complex results [e.g.,

√
−1], and operations involving one or more NaNs as arguments.

For example, taking s as the sign bit, e as the exponent, and f as the fractional part of an N = 32 bit binary
representation of a floating-point number in single precision format as follows,

s e (8 bits) f (23 bits)
b31 b30 b29 b28 b27 b26 b25 b24 b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

and defining emax = FF16 = 25510 and eo� = 7F16 = 12710, the IEEE 754 standard interprets cases with:

• an exponent e of 0116 to (emax − 1) as denoting a nonzero normal number given by (−1)s × 2e−eo� × 1.f
• an exponent e of 0016, with f 6= 0, as denoting a subnormal number given by (−1)s × 2−(eo�−1) × 0.f ,
• an exponent e of 0016, with f = 0, as denoting a signed zero, with sign given by (−1)s,
• an exponent e of emax, with f = 0, as denoting a signed infinity, with sign given by (−1)s, and
• an exponent e of emax, with f 6= 0, as denoting an NaN.

The half precision (N = 16 bit) format is analogous, with emax = 1F16 = 3110 and eo� = F16 = 1510; the double
precision (N = 64 bit) format is also analogous, with emax = 7FF16 = 204710 and eo� = 3FF16 = 102310.

Interrogation of the individual bits of a floating-point representation might occasionally be useful to the
embedded programmer, and in this se�ing the above explanation should su�ice. The actual encoding of the
fundamental operations {+,−,×,÷} on real numbers represented in floating-point notation is rather complex,
and is taken care of remarkably quickly (again, in many cases, executing in a single clock cycle!) by the floating
point units (FPUs) within modern CPU cores, and the MCUs which embed them.

Integer arithmetic (§1.1.2) is significantly simpler for a processor to execute than floating-point arithmetic.
Thus, many auxiliary processing units (see §1.5.3-1.5.4), like FMACs and DSPs, and indeed many low-cost MCUs
(like the ARM Cortex M0 and some implementations of the M3 and M4), do not include hardware FPUs, and
thus any floating-point arithmetic performed must instead be emulated in so�ware on these processors, which
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Figure 1.2: Venn diagram illustrations of (le�) the [7,4] Hamming code and (right) the [15,11] Hamming code.

is relatively slow. In such se�ings, it is strongly preferred to use fixed point arithmetic instead, carefully scaling
all real numbers in the problem to make full use of the fixed point binary representations used while never
encountering overflow over the entire operational envelop of the electromechanical system under consideration
(note that this usually takes considerable testing of the system to verify).

1.1.4 Parity checks, error detection, and error correction
When pushing certain subsystems (memory and communication in particular) to their physical limits (high
speed, low power, small footprint, etc.), occasional bit errors may occur. There are a variety of simple and
e�ective ways to identify such infrequent errors, and in certain cases even to correct for them.

The simplest approach is to append a single parity bit to each set of k data bits that is stored in memory
or sent over a communication channel; this parity bit is selected such that the sum (modulo 2) of all the data
bits in the set, plus this parity bit, is 0 (if even parity is used) or 1 (if odd parity is used). When the entire set
of n = k+ 1 bits (data plus parity) is recalled from memory or received on the other end of the communication
channel, this sum is again performed, and an error is flagged if it is of the wrong value. This approach is capable
of single error detection (SED), with two or more errors in any set of n bits causing misinterpretation; note,
however, that if single bit errors are random and infrequent, double bit errors will be extremely infrequent.

The idea of using parity bits to check for errors may be extended to facilitate stronger error detection, and
even error correction. As shown in Figure 1.2, this is illustrated by the [n, k] linear binary codes (LBCs) with:

• r = 3 parity bits {b1, b2, b3}, k = 4 data bits {a1, a2, a3, a4}, and n = r + k = 7 total bits in a [7, 4] LBC, or
• r = 4 parity bits {b1, b2, b3, b4}, k = 11 data bits {a1, . . . , a11}, and n = r+k = 15 total bits in a [15, 11] LBC.

In each of these example LBCs, an r set Venn diagram may be drawn with exactly one of the k data bits in
each of the intersections. The r parity bits {b1, . . . , br} are then selected such that parity (say, even parity) is
achieved by summing the 2r−1 bits in each of the r sets in this Venn diagram. If a recalled/received set of n bits
is assumed to be corrupted by at most one error, then during the subsequent parity checks of all r sets,

• if parity fails on just a single set, the corresponding parity bit bi is itself identified as corrupted, whereas
• if parity fails on multiple sets, the data bit ai corresponding uniquely to that set intersection is corrupted.

In either case, flipping the corrupted bit corrects the error, thus performing single error correction (SEC).
This approach extends immediately to [2r − 1, 2r − 1− r] LBCs for r ≥ 2, known as binary Hamming codes.

Adding an overall parity bit to the cases shown in Figure 1.2 allows one to correct single bit errors as before
(if one or more of the other parity checks fail, and the overall parity check also fails), but also to detect but not
correct double bit errors (if one or more of the other parity checks fail, but the overall parity check passes). The
general idea of storing or sending multiple redundant bits is extended in §13, to develop classes of LBCs (as well
as linear codes over larger alphabets of symbols per digit) capable of multiple error detection and correction.
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1.2 Central Processing Unit (CPU) cores

An essential defining characteristic of modern CPUs is the word size, which defines

(a) the number of bits in the data bus (the parallel wires carrying data within the CPU),
(b) the number of bits in the memory addresses, and
(c) the number of bits in the instruction codes enumerating the low-level executable commands in the CPU,

all of which are generally integer multiples of the word size, which on modern CPUs is 8, 16, 32, or 64 bits.

Doubling the width of the data bus doubles the amount of information that can be delivered from point A
to point B within the CPU in a single clock cycle, but substantially increases the complexity of the circuitry;
di�erent tradeo�s are thus reached for the width of the data bus for di�erent CPU designs.

Common memory configurations in modern MCUs include 16 address bits, facilitating the direct addressing
of 64 KiB of memory, and 32 address bits, facilitating the direct addressing of 4 GiB of memory. Note that, in
many CPUs, the number of physical address pins implemented can actually be less than or even (with a bit of
additional logic) greater than the number of address bits. In particular, the 64 address bits of some modern 64-bit
CPUs (that is, CPUs with a word size of 64 bits) facilitate the addressing of an absurdly large amount of memory
(16 EiB); 64-bit CPUs thus typically implement only between 40 and 52 physical address pins, facilitating the
direct addressing of 1 TiB to 4 PiB of memory (reminder: see §1.1.1 for definitions of binary powers).

There are two primary types of computer architectures (i.e., the set of rules that describe the organization
of computer systems), the Harvard architecture, which strictly separates memory storage and signal busses for
program instructions from those for data, and the von Neumann architecture, in which instructions and data
share the same memory and busses. Modern implementations of the Harvard architecture usually relax the
strict separation between instructions and data, allowing the instruction memory to actually be accessed as
data, and are thus more accurately referred to as Modified Harvard architectures.

There are also two primary types of instruction set architectures (ISAs), RISC (reduced instruction set
computer) and CISC (complex instruction set computer), in addition to a growing number of hybrid ap-
proaches that are increasingly blurring the lines between the two. The RISC ISA (pioneered by MIPS and
perfected by ARM) has a small set of simplified (fixed-length) instructions operating on a large number of reg-
isters, and a streamlined instruction pipeline allowing a reduced number of clock cycles per instruction. In
contrast, the CISC ISA (notably implemented and perpetuated by x86 CPUs) has a larger set of more complex
(variable-length) instructions operating on a smaller number of registers, with each instruction executing a vari-
able number of low-level operations (e.g., load something from memory, perform some arithmetic, store result
back in memory). Note that the RISC ISA generally accesses memory through dedicated simple instructions,
whereas the CISC ISA accesses memory as an integral part of its more complicated (multi-step) instructions.

Modern CPUs, and MCUs, appropriate for embedded applications include

• ARM Cortex A (32- and 64-bit), as implemented by Amlogic, Broadcomm, Rockchip, Samsung, TI Sitara, . . . ,
• ARM Cortex R (32- and 64-bit),
• ARM Cortex M (32-bit), as implemented by Cypress, Infineon, Microchip, Nuvoton, NXP LPC, STM32, . . . ,
• NVIDIA Carmel (64-bit),
•�alcomm Kryo (64-bit),

• Intel 8051 (8-bit), as implemented by Cypress, Maxim, Silicon Labs, . . . ,
•Microchip AVR (including ATtiny and ATmega) and PIC (8-, 16-, and 32-bit),
• Tensilica Xtensa (64-bit),
• TI MSP430, MSP432, and C2000 (16- and 32-bit),
and many many others; most in this list (except the Intel 8051) are designed around RISC CPU cores.
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1.3 Cache-based memory subsystems
The ALU and FPU of the CPU can approach their full speeds doing useful computations only if they can:
(a) quickly access both the instructions to be performed next, as well as the data necessary to perform these
instructions, and (b) quickly shi� the results of these computations to somewhere secure for later use.

As a general rule, the smaller the data storage subsystem, the faster it can be made, but at a significant cost.
Ordered from fastest/most expensive/largest footprint per byte on down, the primary storage technologies are:

• Static Random Access Memory (SRAM): 1-5 ns access time, volatile (data lost when powered down). Expensive!
•Dynamic Random Access Memory (DRAM): 5-25 ns access time, volatile, frequent refreshes (∼ 1 Hz) required.
• Flash Memory / SD Cards / EEPROM3: 50-500 ns access time, non-volatile, limited write endurance.
• Solid State Drives (SSD4): 10-100 µs access time, non-volatile, hot swappable, limited write endurance.
•Hard Disk Drives (HDD): 5-20 ms access time, non-volatile, hot swappable, excellent write endurance. Cheap!

Significantly, as the size of a data storage subsystem grows, it generally becomes easier to download/upload
increasingly large blocks of data, all at essentially the same time, at relatively li�le added cost (time and energy).

To reduce the mean access time & energy, and overall expense & physical size, required of the memory
system (all of which are important in embedded applications), the communication between the CPU and the
main memory (DRAM or Flash) [and, to even slower “disk” storage5] is o�en assisted by a hierarchy of small-
er/faster cache memory (SRAM & DRAM), together with a memory management unit (MMU) or memory
protection unit (MPU) coordinating its use. Cache memory is o�en divided into multiple levels, including:

• L1i, for queueing up the instructions to be performed next, and
• L1d, L2, L3, and L4 (or a subset thereof6, with the smaller numbers enumerating the faster/smaller “lower”
levels of the cache hierarchy), both for bringing data to the handful of registers holding the data actually used
by the ALU and FPU, and for storing the results of the computations performed back in the main memory.

When using a cache-based memory system, small fixed-size cache blocks (aka cache lines) of contiguous
memory are downloaded/uploaded whenever updating the lower levels of the cache hierarchy7, and larger
cache blocks are downloaded/uploaded whenever updating the higher levels of the cache hierarchy, or commu-
nicating between the highest level of cache (aka the last level cache) and the main memory itself.

The CPU also usually includes a translation lookaside bu�er (TLB), which translates the virtual addresses
used by each program to their corresponding physical addresses in the main memory, for both the instructions
to be executed as well as the corresponding data storage8.

The majority of the silicon area on most modern CPUs is in fact taken up by the MMU, the TLB, and the
L1i, L1d, and (sometimes) L2 and L3 memory caches, thus indicating the importance of the cache-based memory
system to the overall CPU performance (higher levels of cache, if used, are o�en incorporated on separate ICs).
The several components of a modern cache-based memory system usually interact quite e�iciently with li�le if
any intervention by you, the embedded programmer. However, a high-level understanding of how such systems
behave can assist you in implementing certain programming directives that can make such systems run even
be�er, and to streamline the data flow when the CPU stalls due to cache conflicts.

3Flash (see §??) comes in two types, NAND and NOR. Flash is a type of EEPROM designed for high speed and density, with large
erase blocks (& 512 bytes) and limited write endurance (∼ 104 write cycles). The term “EEPROM” is saved for non-volatile memory
built with the same technology, but with small erase blocks (1 to 8 bytes) and be�er write endurance (∼ 106 write cycles).

4SSDs are self-contained subsystems using flash memory together with their own cache memory to both increase e�ective speed
and improve endurance. Many of the concepts discussed in this section extend directly to the control of cache-based SSD systerms.

5“Disk” storage may refer to both filesystems and virtual memory on both SSDs and HDDs.
6How many levels of cache should be implemented for the best overall system performance generally depends on the total amount

of main memory accessible by the system, and the ratio of the CPU speed to the main memory speed, which is o�en much slower.
7At any given level, a cache entry generally includes both the copied data as well as a tag indicating the corresponding range of

addresses in the main memory.
8The TLB is o�en split into an Instruction TLB and Data TLB, and may be split into levels (e.g., L1 ITLB/DTLB, L2 ITLB/DTLB, . . . ).
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Figure 1.3: Illustrations of (le�) a direct mapped cache, and (right) a two-way set associative cache.

When initiating a read or write to/from a particular memory location, the CPU first checks to see if a copy
of that memory location is already represented in its L1 cache. If it is (constituting a cache hit), the CPU
interfaces directly, and quite quickly, with this highest-speed cache. If it is not (a cache miss), the MMU must
look in successively higher levels of (slower-speed) cache, all the way out to the main memory if necessary, to
reach the relevant memory location. The MMU may also create a new cache block, at one or more levels of the
cache, containing this memory location together with nearby entries of the main memory; to do this, it must
generally evict one of the existing cache blocks at each a�ected level.

Where, exactly, such a new cache block may be placed within a cache is governed by the placement policy
associated with that cache level, which may allow the new cache block to placed:

(a) at just a single location, based on the least significant bits of the corresponding memory address block,
called a direct mapped cache (see Figure 1.3a);
(b) at any of N locations (typically, N = 2, 4, or 8), based on the least significant bits of the memory address
and the replacement policy used (discussed below), called an N -way set associative cache (see Figure 1.3b);
(c) at either of 2 locations, following either the direct-mapped policy mentioned above or a hash function point-
ing somewhere else, called an two-way skew associative cache; or
(d) anywhere it wants, called a fully associative cache.

If the placement policy allows a choice to be made in the placement of the new cache block [see (b), (c), and (d)
above], this decision is made by the replacement policy of the MMU. Amongst many possible such policies, one
common choice is to evict the least-recently used cache block. The larger the number of choices in the place-
ment policy, the more places that need to be searched in cache for the requested memory location, but the less
likely a very recently loaded cache block (possibly containing useful information for impending calculations)
will need to be evicted to make room for a new cache block.

When compiling code for cache-based memory systems, the general goal is to maximize the percentage of
cache hits (aka the hit rate) in the lowest levels of cache. This goal is achieved with algorithms that are compiled
with high degrees of locality of reference, including both temporal locality, in which certain variables are
reused repeatedly, and spatial locality, in which the data needed for subsequent computations is generally
stored physically close to each other in the main memory (and is thus likely already present in existing cache
blocks, which are loaded when preparing for the preceding computations).

The MMU must implement a rather involved set of rules in order to achieve cache coherence; that is, to
make the entire multi-level cache-based memory system appear, for the purpose of programming simplicity, as
a single, unified, very fast memory system. The MMU achieves this by carefully coordinating both the reading
of the main memory and the higher levels of cache by the lower levels of cache, as well as the writing of the
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data generated by the CPU back to the various levels of cache and, ultimately, back to the main memory.
When reading saved data from the main memory into the various levels of cache, there are two types of

approaches that the MMU may implement. With inclusive cache designs, which are the most common, smaller
and smaller sub-blocks of the data stored in the higher levels of cache and the main memory are duplicated into
each successively lower level of cache. This approach simplifies the connection between the various levels of
cache (keeping the ankle bone connected to the leg bone, etc), thereby simplifying the problem of maintaining
cache coherence, but increases the communication between the various cache levels. With exclusive cache
designs, on the other hand, two caches never share the same data. This approach avoids repetition, shuns redun-
dancy, eshews reiteration, and resists recapitulation, but leaves the placement policy of the MMU (and/or the
embedded programmer, via compiler directives) with the question which data to put into which levels of cache.

When writing the new data generated by the CPU back out to the various levels of cache and, ultimately,
all the way to the main memory, there are two types of write policies that may be implemented. When
using a write through policy at a particular cache level, newly updated data at that cache level is copied back
immediately to the corresponding section of the next higher level of cache or the main memory. This approach
allows the cache block to be overwri�en immediately with a di�erent section of memory when necessary, but
increases the amount of communication between cache levels. When using a write back policy at a particular
cache level, on the other hand, the updating of the next higher level of cache or the main memory with the
updated data at that cache level is deferred until the corresponding cache block soon needs to be evicted to
make room for the caching of a di�erent section of memory. This approach reduces the communication between
the di�erent cache levels as well as the number of data writes, which is more e�icient, but introduces a possible
delay between when the “eviction notice” is received by a particular cache block, and when that block is actually
ready to cache a di�erent section of memory. Note that it is particularly important to use a write back policy
to the main memory and to SSD when either is implemented on flash, which has limited write endurance.

Whenever a cache contains updated data that has not yet been copied up to the next higher level of cache
and the main memory, that section of cache is said to be dirty. Note also that, in multicore and multi-CPU
systems, a typical cache implementation might be configured as follows:

• each core has a dedicated L1 cache,
• each CPU has a dedicated L2 cache, shared amongst its multiple cores, and
• the entire system has a single L3 cache, shared amongst its multiple CPUs.

Higher levels of cache and the main memory may thus be updated by other CPU cores, as well as by certain
peripherals with direct memory access (DMA). Whenever a cache contains old data that has not yet been
copied down from the next higher level of cache and the main memory, that section of cache is said to be stale.
Substantial care must be taken by the MMU to keep track of both the dirty and the stale sections of cache at
all levels, and to update them when appropriate, in order to keep the cache coherent.

Steps an embedded programmer can take to use cache-based memory systems more e�iciency include:

1) structuring and ordering computations in the compiled code to maximize both temporal and spatial locality,
2) keeping certain memory locations, for variables that are reused repeatedly [e.g., indices {i, j, k, . . .}, con-
stants ci, and temporary variables ti], locked in cache,
3) implementing write through policies for the lower-level cache blocks used primarily for data input to the
CPU, which need to quickly replaceable,
4) implementing write back policies for cache blocks used primarily for data storage to the main memory, to
minimize unnecessary communication between cache levels,
5) bypassing the use of cache altogether for certain data that is only accessed occasionally, and
6) manually flushing (copying back to higher levels) cache blocks that will not be needed again soon.
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1.4 Hardware for exploiting parallelism
Most numerical algorithms can be arranged such that the majority of the calculations performed do not actually
depend upon the results of the immediately preceding calculations. Such situations allow for parallel comput-
ing, in which some calculations may be done simultaneously (or, nearly so) with others, allowing the entire algo-
rithm to complete much more quickly. Parallelism within numerical algorithms is quantified by its granularity:
problems with fine-grained parallelism have a relatively small number of calculations that may be performed
independently before their results must be shared in order to continue, whereas problems with coarse-grained
parallelism have a relatively large number of computations that may be performed independently before their
results must be shared in order to continue. Problems with coarse-grained parallelism naturally evident at the
outset of the problem formulation are sometimes said to be embarrassingly parallel.

The identification of techniques to expose and exploit parallelism is essential for two key reasons. First,
of course, identifying parallelism allows the computer’s operating system (see §2) to assign multiple compute
resources to the problem at hand simultaneously [i.e., the various ALUs and FPUs within the di�erent CPU
cores in the system (see §1.4.3), together with certain other compute resources that may also be available, as
surveyed in §1.5.3-1.5.4]. This enables significantly more computational work to be completed per clock cycle.

Equally important, at a lower level, identifying parallelism allows a self-optimizing compiler to make
much more e�ective use of all available levels of high-speed cache memory (see §1.3) for each individual CPU
core being used, by performing a delicate regrouping and reordering of the various computations to be per-
formed, thus maximizing both the temporal and spatial locality of the data needed for each and every calcula-
tion to be performed along the way. This is best achieved by adhering to the following high-level guidelines:

(a) Write clean codes that clearly/simply reveal the problem structure at hand (e.g., if your computer language
allows it, somehow writing A*B for matrix/matrix multiplication, or A\b for Gaussian elimination, instead of
looping over all of the individual indices involved in such basic but time-consuming computations yourself).

(b) Use a modern self-optimizing compiler that calls the BLAS (basic linear algebra subprograms) and LAPACK
(linear algebra package) so�ware libraries extensively (or, if the programming language or compiler you are
using doesn’t do this for you, call these routines yourself from within your code, and consider changing to a
di�erent programming language or compiler!). These libraries are meticulously hand tuned by each CPU ven-
dor to maximize hit rates in each level of cache for the fundamental linear algebra problems that your code will
spend the bulk of its time solving at any given problem size. You are unlikely to do be�er on your own.

(c) If at all possible, define the problem size at compile time, via constants defined in the code header, rather
than at run time, via data files that are read in (post compilation). This important (but, o�en-overlooked) third
guideline helps the compiler to decide, at compile time, specifically how to reorder the various loops involved
in order to achieve maximum performance from the cache. Indeed, for many (large) problems, the advantage
here is so significant that recompiling the code in question immediately before any large run, once the size of
the problems to be solved are identified and defined in the code header, can be quite beneficial.

Most numerical algorithms can actually be arranged (or, rearranged) to reveal a hierarchy of parallelism
within, with some fine-grained parallelism embedded within its innermost loops, and successively coarser-
grained parallelism evident in the loops that surround them. Modern CPUs and compilers can e�ectively ex-
ploit many of these di�erent levels of parallelism simultaneously, in order to achieve remarkable degrees of
computational e�iciency with relatively li�le specific intervention by the embedded programmer.

It is important to understand the several ways that modern computers exploit parallelism to see other
specific things the embedded programmer can do [besides points (a) through (c) above] to help facilitate the
parallelization process. Note that the subsections that follow are ordered from techniques best suited to exploit
the finest-grained parallelism available (in the innermost loops), to those that are be�er suited for exploiting
successively coarser and coarser grained parallelism.
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1.4.1 Instruction pipelining and branch prediction
Even relatively simple (i.e., RISC) instructions may themselves generally be divided up into a number of smaller
steps; for example, (a) fetch the instruction, (b) fetch the operands, (c) do the instruction, (d) write the results.
Instruction pipelining is a technique for implementing parallelism on a CPU over each of these smaller steps,
thus e�ectively keeping each corresponding part of the ALU or FPU busy doing useful work at each timestep.
For example, at a clock cycle when instruction k is just starting with step (a) above, instruction k − 1 can
(simultaneously) be executing step (b), instruction k − 2 can be executing step (c), and instruction k − 3 can
be finishing up with step (d). For this to work correctly, the calculations must be ordered in such a manner
that a fine degree of parallelism is available, such that later commands don’t try to fetch the results of earlier
commands until they are actually available, which can take a few timesteps.

Branch prediction is a technique used to keep such instruction pipelines full even during the execution
of conditional (if-then-else) statements. This is achieved by guessing (based on previous executions of each
conditional) which branch the code is most likely to take, and proceeding assuming that the conditional will
actually take that direction this time. If it does, the instruction pipeline remains full right through the condi-
tional statement. If it does not, however, the tentative results of each calculation a�er the conditional must
be discarded, before they are wri�en back to memory, and the pipeline re-initialized with the instructions on
the other branch of the conditional. Branch prediction is especially valuable in CISC systems, with complex
instructions and thus relatively long pipelines, and on codes that frequently encounter conditionals. [Note that
the code for handling branch predictions is generally inserted by the compiler, if the appropriate flags are set,
and thus need not be wri�en by the embedded programmer.] The overall time penalties associated with in-
correct branch predictions may be kept small by (a) minimizing the number of conditional statements that are
encountered by the numerical algorithm (eliminating such conditionals altogether from all but the outermost
loops of the numerical algorithms used), and (b) using RISC processors, which have relatively short instruction
pipelines.

1.4.2 Vectorization (SIMD)
As discussed in §1.1.2 and 1.1.3, the fixed-point and floating-point representations of real numbers that are use-
ful in embedded applications are typically only 16 or 32 bits long, whereas the word length of high-performance
CPU cores is 32 or 64 bits, and data bus and register sizes of modern CPUs and DSPs (see §1.5.4) can be even
larger (e.g., 128 bits or more). Such an organization facilitates, where useful, the grouping of real numbers
together as a vector, and performing quickly the same arithmetic operations on all elements of the vector si-
multaneously (or, nearly simultaneously), leveraging the extensive fine-grained parallelism o�en present in the
innermost loops of substantial numerical algorithms. This basic idea goes by several names; in the early days
of computing on Cray supercomputers (including the Cray-1, Cray X-MP, Cray-2, & Cray Y-MP), this process
was called vectorization, and operated on very large vectors (with, e.g., 64 double-precision floats). The idea
of vectorization went dormant in the mid 90’s, but was revived for desktop and embedded processors, using
much shorter vectors, under the general name of SIMD (single-instruction, multiple data), with di�erent im-
plementations appearing under various trademark names including MMX/SSE (Intel), 3DNow! (AMD), Altivec
(Freescale), VMX (IBM), Velocity Engine (Apple), and, more recently, Neon and Helium (ARM).

1.4.3 Shared-memory multiprocessing
At the next coarser level of granularity of parallelism in numerical algorithms, multiple substantial tasks can
o�en be identified that can be run completely independently from each other for a while [say, computingO(103)
or more floating-point operations (FLOPS) before having to share results with those of other tasks in order to
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continue]. Such independent tasks are o�en found in the outermost loops of a code, and do not actually need
to contain the same set of commands in order for the compiler to be able to parse them out and organize how
to compute them in parallel; this se�ing is thus occasionally referred to as MIMD, to distinguish it from the
SIMD se�ing required to parallelize innermost loops via vectorization, as discussed in §1.4.2.

The most straightforward way to leverage such coarse-grained parallelism is multithreading; that is, the
spawning and running of multiple independent “threads” by a single numerical algorithm, each of which may
run for a while on a di�erent CPU core (as coordinated by the scheduler, as discussed further in §2.1) before
pausing from time to time to synchronize its results with the other threads, but all of which ultimately access the
same main memory. This se�ing is referred to as shared-memory multiprocessing, and may be coordinated
directly by an embedded programmer from within a numerical code using OpenMP compiler directives, or in
many cases can be e�iciently coordinated by a good self-optimizing compiler.

As discussed in detail in §1.3, the use of high-speed cache memory (o�en, at multiple levels) has become
essential for modern CPUs to reach their full potential, as CPUs are now typically much faster than the main
memory that they access, but wide data paths allow large blocks of data to be retrieved from main memory
in relatively li�le additional time (as compared with the time required to retrieve a single byte). In multi-core
systems, L1 cache is typically dedicated to each core, L2 cache is dedicated to each CPU (shared amongst
all cores on that CPU), and (o�en) L3 cache is shared amongst all CPUs, providing the gateway to the main
memory. The challenge of maintaining cache coherence in multicore se�ings complicates the execution of
complex numerical algorithms using shared-memory multiprocessing, in which data must be shared frequently
between the di�erent running threads, though in most applications the problem of maintaining cache coherence
is taken care of by the MMU, with relatively li�le intervention required by the embedded programmer.

Most modern computers with a handful of CPU cores for shared-memory multiprocessing implement some
sort of symmetric multiprocessing (SMP9), in which all compute cores have equal access to all memory
and peripherals (usually via some arrangement of a data bus, address bus, and control bus), and may thus be
treated essentially equally by the scheduler (see §2.1) for all tasks (i.e., no specific tasks are restricted to certain
processors). Following this approach, two specific design paradigms simplify the organization:

(a) homogeneous computing, in which only one kind of CPU core is used, and
(b) uniform memory access (UMA), in which all cores have equal access to all sections of main memory.

Demands on peak computational performance in embedded systems continue to increase steadily, following
the celebrated “Moore’s Law” (that is, the observed doubling of the IC density in leading CPUs, and thus
their performance, about once every 2 years). At the same time, the maximum clock speeds that CPUs can
support is increasing only gradually in recent years, with higher clock speeds requiring higher voltages as well
as increased power consumption to operate the CPU. Thus, embedded computers are now tending to include
more and more CPU cores. Further, demands on computational performance in most applications are found
to vary substantially over time, and power e�iciency during the quiescent times is o�en just as important as
peak computational performance during the active times. One approach to achieving an improved balance
between maximizing peak computational performance and minimizing time-averaged power consumption is thus
to implement dynamic voltage and frequency scaling, automatically reducing both the e�ective CPU clock
speed as well as the voltage driving the CPU, in real time, when the recent average computational load is found
to be relatively light10.

When designing computers to meet even stricter requirements, however, both of the simplifying paradigms
(a) and (b) above eventually become limiting factors, and must be relaxed in order to build systems with even
greater peak computational performance, and with even lower average power consumption. Thus:

9The abbreviation SMP usually denotes symmetric multiprocessing, but is occasionally used more generally for shared-memory
multiprocessing, which may or may not be symmetric. We recommend the former, more restrictive use, which is more common.

10In this se�ing, a relevant performance metric is FLOPS per MHz, in addition to peak FLOPS.
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• The heterogeneous computing paradigm is now quite common, in which the embedded computer includes
more than one type of CPU core (one with higher peak performance, and one with lower average power con-
sumption), which may be selectively turned on and o�. There are many di�erent ways in which this general
idea may be implemented; examples include ARM’s big.LITTLE and DynamIQ technologies.
• An emerging design paradigm for embedded computers is nonuniform memory access (NUMA), in which
each CPU (or, CPU cluster) is closely associated with only a subset of the main memory, and it takes substan-
tially more time to read from or write to memory that is more closely associated with the other CPUs in the
system [though all of the main memory shares a single large address space]. This approach was perfected in
the field of high performance computing by Silicon Graphics (SGI) under the brand name NUMAlink, and (as
of 2021) is only beginning to emerge in computers designed for embedded applications.

Note finally that, akin to branch prediction (see §1.4.1), speculative execution of independent threads of a
multithreaded code following a conditional statement, or for which there is potentially stale data input, may be
performed in the se�ing of shared-memory multiprocessing if su�icient computational resources are available,
with speculative locks used to delay the write-back (or, the deletion) of the results of the speculative section of
code until the conditional itself is evaluated, or the potentially stale data input has been verified as correct.

1.4.4 Distributed-memory multiprocessing

To solve even bigger problems, leveraging the coarsest-grained parallelism that can be identified in a numerical
algorithm, many independent computers, each with their own dedicated memory, may work together over a
fast network operating as a computer cluster. When large centralized computer clusters, and the codes running
on them, are particularly well tuned for the coordinated distributed computation of very large individual jobs11,
this se�ing is o�en referred to as high performance computing (HPC).

Cluster-based “cloud” computing in the HPC se�ing is a very natural complement to “edge” computing for
many large-scale real-time problems addressed by embedded sensors. Examples of interest include:

• the forecasting of the evolution of the track and intensity of hurricanes or forest fires and, simultaneously,
the uncertainty quantification (UQ) related to such forecasts,
• the development of a single detailed map of a region, based on the information gathered from several inde-
pendent mobile robots, each moving through and exploring di�erent overlapping subregions, and each inde-
pendently executing their own simultaneous localization and mapping (SLAM) algorithms, etc.

In such problems, a large computation needs to be performed on the cluster, fusing the Big Data being
gathered, in real time, from numerous (o�en, heterogenous) sources (e.g., mobile robots), o�en using com-
plex physics-based models. At the same time, based on the UQ performed on the cluster, the mobile robots
o�en need to be redispatched intelligently to di�erent subregions, a se�ing referred to as adaptive observation.

In the HPC se�ing, distributed computing leverages a fast and reliable communication network (see §3.1),
such as12 Ethernet or Infiniband, between the independent computers making up the cluster. As opposed to
shared-memory multiprocessing (§1.4.3), in which the MMU and a good self-optimizing compiler can o�en
handle most if not all of the low-level details related to cache coherence and the coordination of distinct threads
related to a certain job, in distributed-memory multiprocessing the necessary passing of data (aka messages)
between the independent computers in the cluster must o�en be coordinated manually by the programmer from

11As opposed, for example, to the maintenance of transactional databases used for stock trades, ticket sales, large-scale search,
social media, etc., with the cluster interacting simultaneously, and essentially independently, with a very large number of users.

12HPC is a very small market indeed, as compared to consumer electronics (largely supporting web surfing, video games, o�ice
productivity applications, etc). HPC today advances mostly by repurposing cu�ing-edge commercial o�-the-shelf (COTS) electronics
technologies developed for consumer electronics. In this se�ing, the possible deployment of Thunderbolt as a potential new technol-
ogy for networking in HPC clusters is quite interesting.

1-14

https://en.wikipedia.org/wiki/Heterogeneous_computing
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://www.arm.com/why-arm/technologies/dynamiq
https://en.wikipedia.org/wiki/Non-uniform_memory_access
https://www.youtube.com/watch?v=KmtzQCSh6xk
https://en.wikipedia.org/wiki/NUMAlink
https://en.wikipedia.org/wiki/Speculative_multithreading
https://iacoma.cs.uiuc.edu/iacoma-papers/wmpi_locks.pdf
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Uncertainty_quantification
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping
https://en.wikipedia.org/wiki/Big_data
https://www.researchgate.net/publication/235183730_Observation_Adjoint_Sensitivity_and_the_Adaptive_Observation-Targeting_Problem
https://packetpushers.net/thunderbolt-as-a-data-network-technology/


Renaissance Robotics (v.2021-09-01) Chapter 1: Cybernetics

within the numerical code, which is a rather tedious process. Some variant of the Message Passing Interface
(MPI)13 is generally used for this process in the distributed-memory se�ing, e�ectively solving (by hand) similar
problems as those solved by the MMU (automatically) for maintaining cache coherence in the shared-memory
se�ing, passing messages and blocking new computations only when necessary. Primitive operations used to
coordinate message passing and computations in MPI-1 include

• point-to-point message passing (from one specific node to another),
• one-to-all message passing (aka broadcast),
• all-to-one message passing, together with an operation like summing (aka reduce),
• all-to-all message passing, for rearranging the data over the cluster, etc.

Such commands can be either blocking (halting a thread’s execution until the command is completed) or non-
blocking, or follow a ready-send protocol in which a send request can only be made a�er the corresponding
receive request has been delivered. MPI-2 introduces certain additional operations, including

• one-sided put (write to remote memory), get (read from remote memory), and accululate (reduce) operations,
• the ability of an existing MPI process to spawn a new MPI process,
• the ability of one MPI process to communicate with an MPI process spawned by a di�erent MIP process, etc.

Note that FT-MPI is a remarkable extension (plug-in) that adds significant fault tolerance capabilities to MPI;
Open MPI also includes significant fault tolerance capabilities.

In the field of robotics, the problem of distributed computation is referred to as distributed control. Dis-
tributed control systems generally implement several nested control loops on the individual mobile robots or
machines (e.g., on an assembly line) involved. Decentralized control systems denote controllers that are
primarily distributed on each robot or machine, with no central supervisory authority. Centralized control
systems, in contrast, denote controllers that primarily operate on a central supervisory computer. Most prac-
tical control systems for multi-robot teams or multi-machine assembly line operations are some “hierarchical”
hybrid between the two, with decentralized low-level/high-speed control feedback on the inner loops (e.g., co-
ordinating the motion of an individual robot arm), coupled with centralized high-level coordination and fault
management on the outer loops (adjusting the speed of the assembly line, etc). Mobile robots add the significant
complication of very unreliable communication links, a challenge that requires significant care to address.

1.4.5 Summary: enabling the e�icient parallel execution of codes
The reordering of the individual calculations within a numerical code, maximizing the temporal and spatial
locality of the data needed for each calculation to be performed, and thus maximizing the e�ectiveness of all
available levels of cache memory, is best achieved by using a modern self-optimizing compiler, with a high level
of optimization selected, together with steps (a), (b), and (c) described in the introduction of §1.4.

Pipelining (with or without branch prediction) and SIMD vectorization, as discussed in §1.4.1 – 1.4.2, are
both facilitated by the remarkable hardware of the modern CPU itself, together with the low-level opcodes
used by good self-optimizing compilers to leverage this hardware. The use of both techniques can be activated
by you, the embedded programmer, rather easily, simply by compiling your code with the appropriate compiler
flags set to enable these features. With today’s CPUs and compilers, it is generally not necessary for you to
write code in assembler and deal with such low-level opcodes yourself, thus leaving you to a�end to higher-
level, more consequential issues. The e�icient use of shared-memory multiprocessing (§1.4.3) sometimes takes
a bit more work, leveraging OpenMP compiler directives to tune the default behavior generated by the compiler
when necessary. The use of distributed-memory multiprocessing (§1.4.4) is, as of 2021, much harder, and must
usually be coordinated manually by the user (o�en leveraging MPI), as introduced briefly above.

13Some HPC languages, like Coarray Fortran (which is implemented by G95), are beginning to implement coding constructs that
that make higher-level parallel programming in the distributed memory se�ing significantly easier.
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1.5 Microcontrollers (MCUs) and associated coprocessors

We now shi� topics from the foundational ideas in modern computing, to the technologies that implement
these ideas in embedded applications. At the heart of such an implementation is a microcontroller (MCU14,15),
which is an integrated circuit (IC) that fuses one or more CPU(s) together with an interconnecting bus fabric,
a (SRAM-, DRAM-, and/or Flash-based) memory subsystem, and a number of useful coprocessors, such as:

- arithmetic logic units (ALUs) for fast integer and fixed-point computations [§1.1.2],
- floating-point units (FPUs) for fast floating-point computations at specific precisions [§1.1.3],
- programmable interrupt controllers (PICs) to handle signals that trigger specific new actions [§1.5.2],
- general purpose timer/counter units [§1.5.5], and
- communication interfaces [§3] for connecting the MCU to a range of input/output (i/o) devices [§6],

as well as other application-specific integrated circuits (ASICs) useful for commonly-needed functions, such as:

a. dedicated hardware for transcendental function approximation [§1.5.3.1],
b. ring bu�ers for computing finite impulse response & infinite impulse response (FIR/IIR) filters [§1.5.3.2],
c. cyclic redundancy check (CRC) units, for performing fast detection of bit errors [§1.5.3.3],
d. random-number generators (RNGs) [§1.5.3.4], etc.

Some leading MCU families, and the CPUs that they embed, were surveyed briefly in §1.2. As indicated there,
popular MCUs range from simple 8-bit devices, with just a few simple coprocessors, to remarkably e�icient
integrations of high-performance, low-power 32-bit or 64-bit CPUs with high-performance coprocessors
(DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs, etc), together dozens of timers and other independent hardware
communication subsystems (each function independently, in real time, without loading the main CPU core of
the MCU, and o�en operate with direct memory access). Such coprocessors include, specifically,

e. quadrature encoder counters, for quantifying the (clockwise or anticlockwise) rotations of sha�s,
f. pulse-width modulation (PWM) generators, for driving servos and ESCs,
g. UART, SPI, and I2C channels, for hooking up other ICs and (nearby) o�-board peripherals,
h. CAN and RS485 controllers, for longer-distance communication over di�erential pairs of wires,
i. USB controllers, for communicating with desktop/laptop/tablet computers and associated peripherals,
j. digital-to-analog and analog-to-digital converters (DACs and ADCs), for interfacing with analog devices,
k. inter-IC sound (I2S) channels and/or serial audio interfaces (SAIs), for audio channels,
l. on-board or o�-board oscillators, coin cell power backup, and real-time clocks (RTCs), for scheduled wakeup,
m. integrated op amps, for building analog filter circuits (low-pass, band-pass, notch, PID, lead/lag, . . . )
n. memory controllers (e.g., FSMC and quad SPI channels), for hooking up additional memory, etc.

Loading the CPU, other serial comm protocols can be bit-banged using reconfigurable general-purpose input/
outputs (GPIOs). An example modern MCU is the STM32G474, a block diagram of which is given in Figure 1.4.
This MCU, built around an ARM Cortex M4F (a RISC CPU with 3-stage instruction pipeline, a modified Harvard
architecture, and an FPU for single-precision floats), is implemented in the Beret family of boards introduced
in §5, and integrates several coprocessors (indeed, in all 14 categories, a through n, mentioned above).

14In contrast (but, similar in many respects), a microprocessor (MPU) is an IC designed to form the heart of a desktop, laptop, or
high-performance tablet computer, with hardware subsystems focused more on computational performance, graphics, and e�iciently
accessing a much larger memory and data storage footprint than a typical MCU.

15A third relevant category today is what is o�en called a mobile processor (MP), which is an IC that implements many of
the same components as an MCU or MPU, but is tuned specifically for low-power operation, standby, and sleep. Modern MPs,
which achieve remarkable flops/MHz, flops/mW, and (due to very large scale manufacturing, for use in smartphones) peak flops/$
ratios on real-world problems, are particularly well positioned for advanced high-level applications in embedded systems (performing
vision-based feature recognition and SLAM, machine learning, etc.), as a complement to MCUs for handling the real-time low-level
feedback required in motor control applications. Note that the dividing lines between MPs, MPUs, and MCUs continues to blur, and
emphasizing the distinction between them is not necessarily productive moving forward.
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Figure 1.4: Block diagram of the STM32G474 MCU, with the hardware leveraged by the Berets (see §5) high-
lighted in color (see text). Image adapted from the STM32G474 datasheet, courtesy of STMicroelectronics.
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adapted from the STM32G474 datasheet, courtesy of STMicroelectronics; see also ST Application Note AN4031.

1.5.1 Busses, memory management, and direct memory access (DMA)
At the heart of a modern MCU is one or more CPU core(s). The complex fabric interconnecting these CPU
core(s) within the MCU to the various coprocessors, to the cache-based memory and data storage system, and
to the connected peripherals, is organized into a number of distinct busses, each with specific privileges, as
illustrated for the STM32G47416 in Figure 1.5. Most modern processors follow ARM’s open standard Advanced
Microcontroller Bus Architecture (AMBA) protocol, which includes the Advanced High-performance Bus (AHB),
which is responsible for both the sending of an address to memory as well as the subsequent writing or reading
of data or instructions to/from that memory address (via busses ranging from 64 bits to 1024 bits in width),
and the lower-complexity Advanced Peripheral Bus (APB), which coordinates lower-bandwidth register and
memory access by system peripherals (via a 32-bit bus).

Another essential aspect of modern CPUs is direct memory access (DMA), a feature that allows coprocessors
and peripherals to read or update memory locations directly, without tying up the CPU as a choke point. In
some implementations, DMA can also be used, without bogging down the CPU, to copy or move data from
multiple memory locations into a single communication data stream, or to take data from a single data stream
and distribute it to the appropriate memory locations, common processes referred to as sca�er/gather I/O.

16In the ARM Cortex M4 CPU implemented in the STM32G474 MCU, there are three main busses, the ICode (instruction) interface,
the DCode (data) interface, and the System interface, denoted I-BUS, D-BUS, and S-BUS in Figures 1.4 and 1.5.
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1.5.2 Programmable interrupt controllers (PICs)
The CPU of an MCU o�en needs to wait for a trigger (for example, a clock pulse, or a signal from an external
peripheral) before beginning a specific new action or computation. The CPU also needs to be able to handle
various exceptions that occur when something unexpected happens (divide by zero, etc.). Such an event is
generically known as an interrupt request (IRQ). There are many possible sources of IRQs, and at times they
can arrive at the MCU in rapid succession, and thus need to be carefully prioritized and dealt with by the CPU
accordingly. IRQs are handled by a dedicated unit on the CPU called17 a programmable interrupt controller
(PIC). The PIC assigns a priority and a block of code, called an interrupt service routine (ISR), for the CPU to
deal with any given IRQ, if/when one is detected.

IRQs are denoted as maskable or non-maskable, which essentially distinguishes whether or not they may
be ignored (at least, for the time being) by the ISR that is associated with that IRQ. Interrupts that deal with
non-recoverable hardware errors, system reset/shutdown, etc., are o�en flagged as non-maskable interrupts
(NMIs). Common interrupts generated and handled by user code, however, should generally NOT be flagged
as NMIs, since NMIs hinder other normal operations (stack management, debugging, . . . ). Common interrupts
that are time critical should instead be flagged as high priority maskable interrupts, and if such IRQs are missed
by the system during testing, the behavior of the scheduler (see §2.1) should be adjusted to make certain that
such high priority maskable interrupts are set up to be dealt with in a timely fashion.

1.5.3 Application specific integrated circuits (ASICs)
Application specific integrated circuits (ASICs) are dedicated coprocessors that are hard-wired for narrowly-
defined purposes. As introduced previously, representative examples include transcendental function genera-
tors, ring bu�ers, cyclic redundancy check calculation units, random-number generators, etc. To illustrate, this
section discusses various characteristics of these four common ASICs. Note that the hardware implementing
the timer / counter units discussed in §1.5.5, and the communication subsystems discussed in §1.5.6, may also
be considered as ASICs.
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Figure 1.6: Geometric interpretation of the (successively smaller and smaller) rotations of the iterative CORDIC
algorithm developed in §1.5.3.1, for (a, b) circular, (c, d) linear, and (e, f) hyperbolic rotations, illustrating both
(a, c, e) “rotation” mode, which performs a generalized rotation of the vector (x0, y0) [illustrated here for
(x0, y0) = (1, 0)] by the angle z0, and (b, d, f) “vectoring” mode, which rotates the vector (x0, y0) to the positive
x axis, while incrementing z0 by the angle ∆z required for such a rotation. Code at RR_cordic_viz.m.

17The PIC on the ARM Cortex M4, as depicted in Figure 1.4, is called a nested vectored interrupt controller (NVIC).
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circular µ = 1, αi = atan (1/2i), fi = tan(αi) = 1/2i, K̄i = 1/
√

1 + 1/22i

linear µ = 0, αi = 1/2i, fi = 1/2i, K̄i = 1

hyperbolic µ = −1, αi = atanh(1/2i), fi = tanh(αi) = 1/2i, K̄i = 1/
√

1− 1/22i

Table 1.3: Formulas for µ, αi, fi, and K̄i, for (top) circular, (middle) linear, and (bo�om) hyperbolic CORDIC
rotations. Defining Ki = K̄1 K̄2 · · · K̄i, the first few values of {αi, fi, Ki} are reported in Table 1.4.

circular
i = 0, 1, 2, . . .

αi = 0.78540, 0.46365, 0.24498, 0.12435, 0.06242, 0.03124, 0.01562, . . .
fi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
Ki = 0.70711, 0.63246, 0.61357, 0.60883, 0.60765, 0.60735, 0.60728, . . .

linear
i = 0, 1, 2, . . .

αi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
fi = 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, . . .
Ki = 1, 1, 1, 1, 1, 1, 1, . . .

hyperbolic
i = 1, 2, 3 . . .

αi = 0.54931, 0.25541, 0.12566, 0.06258, 0.06258, 0.03126, 0.01563, . . .
fi = 1/2, 1/4, 1/8, 1/16, 1/16, 1/32, 1/64, . . .
Ki = 1.15470, 1.19257, 1.20200, 1.20435, 1.20671, 1.20730, 1.20745, . . .

Table 1.4: Angles αi, rotation factors fi, and cumulative scale factors Ki of the CORDIC algorithm for (top)
circular, (middle) linear, and (bo�om) hyperbolic rotations. Note there are two rotations in the hyperbolic case
with f = 1/16 and α = atanh(1/16) = 0.06258 (see text). The full table of coe�icients needed to apply
CORDIC to achieve single-precision floating-point accuracy in all cases is computed in RR_cordic_init.m.

1.5.3.1 CORDIC approximation of transcendental functions†

The e�icient so�ware approximation (to a selectable precision) of various transcendental functions is discussed
in detail in §2.7. Specialized hardware suitable for approximating such functions even faster (again, to selectable
precision), while o�loading the CPU for other tasks, may also be implemented. The clever algorithm underlying
such hardware is known as CORDIC (coordinate rotation digital computer), and is well suited for compact
implementation on both ASICs and more general-purpose coprocessors (DSPs, FPGAs, etc).

We will discuss the CORDIC algorithm itself first, including its so�ware and hardware implementations;
interpretation [Figure 1.6] of the convergence of the CORDIC algorithm is deferred to the end of this section.

The operations on {x, y, z} that underlie all six forms of CORDIC are given, at each iteration, by(
x
y

)
i+1

= K̄i

(
1 −µσifi
σifi 1

)(
x
y

)
i

, (1.1a)

zi+1 = zi − σiαi. (1.1b)

That is, at each iteration, a “scaled rotation” is performed on (x, y), and z is incremented by ±αi. The param-
eters {αi, K̄i} may be precalculated according to the various formula given in Table 1.3, the first few values of
which are listed in Table 1.4. The variable µ is just a sign bit, and is set as 1 for circular rotations, 0 for linear
rotations, and−1 for hyperbolic rotations. The variable σi is also a sign bit, and is selected so that each iteration
drives either z (for “rotation” mode) or y (for “vectoring” mode) towards zero as the iterations proceed. The
factor fi (and, in the case of linear rotations, the corresponding angle αi) is halved at each iteration. In the
case of circular and hyperbolic rotations, the first several angles αi may be stored in small look up tables on

†This section, like later sections of this text marked with a dagger (†), is a bit harder than those around it, and may be skimmed
or skipped upon first read without significantly disrupting the continuity of the presentation.
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Algorithm 1.1: Main iteration of the CORDIC algorithm; full code available at RR_cordic_core.m.
for j = 1 : n % per form n i t e r a t i o n s

% Compute s i g n o f nex t r o t a t i o n ( mode=1 f o r " r o t a t i o n " , mode=2 f o r " v e c t o r i n g " )
i f mode ==1 , sigma = sign ( v ( 3 ) ) ; else , s igma=−sign ( v ( 2 ) ) ; end

%%%% BELOW I S THE HEART OF THE CORDIC ALGORITHM %%%%
v ( 1 : 2 ) = [ 1 −mu∗ sigma ∗ f ; s igma ∗ f 1 ] ∗ v ( 1 : 2 ) ; % g e n e r a l i z e d r o t a t i o n o f v ( 1 : 2 ) by f
v ( 3 ) =v (3)− sigma ∗ ang ; % inc rement v ( 3 )

% update f ( d i v i d e by 2 ) [ f a c t o r s { 1 / 2 ^ 4 , 1 / 2 ^ 1 3 , 1 / 2 ^ 4 0 } r e p e a t e d i n h y p e r b o l i c c a s e ]
i f mu>−1 | | ( ( j ~ = 4 ) && ( j ~ = 1 4 ) && ( j ~ = 4 2 ) ) , f = f / 2 ; end
% update ang from t a b l e s , o r d i v i d e by 2
i f j +1 <= c o r d i c _ t a b l e s . N && rot <3 , ang= c o r d i c _ t a b l e s . ang ( ro t , j + 1 ) ; else , ang=ang / 2 ; end

end
% NOTE : the s c a l i n g o f v by K , i f n e c e s s a r y , i s done i n RR_cord i c .m, not i n t h i s code .

the (hardware) CORDIC unit; once αi becomes su�iciently small (at around iteration i = 25), the subsequent
αi are, again, simply halved at each iteration. Finally (important!), defining a cumulative scaling factor a�er
n iterations such that Kn = K̄1 K̄2 · · · K̄n, which may also be precalculated, multiplication by the individual
scaling factors K̄i in (1.1a) may be deferred, and the cumulative scaling factor Kn instead applied to (x, y) by
the CORDIC preprocessing unit, either at the end, or at the beginning, of the n iterations performed.

A full floating-point implementation of the above algorithm is available at RR_cordic_core.m, with exten-
sive preprocessors at RR_cordic.m and RR_cordic_derived.m; the heart of this code is listed in Algorithm 1.1.
Note that such a so�ware implementation of CORDIC is actually not very e�icient as compared with the so�-
ware approximation of transcendental functions using Chebyshev expansions, as discussed in §2.7. Where
CORDIC becomes particularly useful, however, is its realization in specialized hardware, including both ASICs
and high-performance coprocessors like DSPs and FPGAs (see §1.5.4), using fixed-point binary representations
(see §1.1.2) of the real numbers involved. In this se�ing, the halving operations in Algorithm 1.1 may be accom-
plished quickly, with single bit shi�s (to the right) of the corresponding fixed-point numbers. Further, one can
implement the logic of the sign bits (that is, σ and µ) essentially for free. In such hardware, the computational
cost of most of the iterations of Algorithm 1.1 in the case of circular or hyperbolic rotations is thus:

• three integer additions, during the generalized rotation of v(1,2) and the increment of v(3),
• one bit shi�, during the update of f, and
• one table lookup [or, a second bit shi�], to determine the next value of ang (that is, of αi).

An e�icient hardware implementation of CORDIC is discussed in ST AN5325, which establishes that hardware
implementations of CORDIC can have a very small silicon footprint, and in many cases of interest (for various
transcendental functions, at specified levels of precision) can be substantially faster than computing these same
functions using precompiled so�ware libraries (see §2.7). Note in particular (in Table 1.4) that the angles reduce
by about a factor of two at each iteration; convergence (i.e., the additional accuracy achieved per iteration) of
this algorithm is thus said to be linear. Other iterative algorithms we will encounter later have substantially
faster convergence; the key to the success of CORDIC is its remarkably simplicity, as itemized above.

In the remainder of this section, we turn to the interpretation of what the CORDIC iterations defined above
actually accomplish. As mentioned previously, there are 3 · 2 = 6 forms of the CORDIC algorithm, with:

• three di�erent types of rotations: circular (µ = 1), linear (µ = 0), or hyperbolic (µ = −1) [see Table 1.3], and
• two di�erent modes for determining σi:

rotation mode, which takes σi = sign(zi), eventually driving zn → 0 upon convergence, or (1.2a)

vectoring mode, which takes σi = −sign(yi), eventually driving yn → 0 upon convergence. (1.2b)
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Interpretation in the case of circular rotations.
For circular rotations (µ = 1), noting that cos2 x+ sin2 x = 1 and tanx = sinx/ cosx, and thus

cosαi = 1/
√

1 + tan2 αi = 1/
√

1 + 2−2i = K̄i and sinαi = tanαi/
√

1 + tan2 αi = K̄i fi,

the rotation in (1.1a) may be wri�en [note: the scaling by K̄i is deferred in the code](
x
y

)
i+1

= Gi

(
x
y

)
i

where Gi = K̄i

(
1 −σifi
σifi 1

)
=

(
cos(σiαi) − sin(σiαi)
sin(σiαi) cos(σiαi)

)
; (1.3)

this is called a Givens rotation, and corresponds to an anticlockwise rotation of (x, y)i by the angle (σiαi)
at each iteration. Of course, successive Givens rotations accumulate; denoting φ3 = φ2 + φ1, ci = cos(φi),
si = sin(φi), and applying the identities c2c1 − s2s1 = c3 and s2c1 + c2s1 = s3, this may be verified as follows:(

c2 −s2

s2 c2

)(
c1 −s1

s1 c1

)
=

(
c2c1 − s2s1 −c2s1 − s2c1

s2c1 + c2s1 −s2s1 + c2c1

)
=

(
c3 −s3

s3 c3

)
. (1.4)

Thus, successive applications of (1.3) result in a total Givens rotation of the original (x0, y0) vector by
α =

∑n
i=0 σiαi. Note that the αi are scaled by a factor of 0.5, or slightly larger, at each iteration; as a re-

sult, for large n and by appropriate selection of the σi, total rotations anywhere in the range−αmax ≤ α ≤ αmax
are possible, where αmax =

∑n
i=0 |σiαi| =

∑n
i=0 αi = 1.743287 (that is, a bit over π/2). Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total Givens
rotation of −αmax ≤ z0 ≤ αmax radians [and a cumulative scaling of K−1

n ] is applied to the (x0, y0) vector [see
Table 1.5]. As a special case, defining (x0, y0) = (Kn, 0), we have (xn, yn)→ (cos z0, sin z0) in this mode.

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
[if Kn is applied] along a curve of constant x2 + y2 (that is, along a curve of constant radius from the origin)
such that yn → 0, while the increments of zi in (1.1b) again keep track of the total rotation performed in the
process of rotating the vector (x0, y0) to (xn, 0), so that (xn, zn)→ (K−1

n

√
x2

0 + y2
0, z0 + atan (y0/x0)).

Interpretation in the case of hyperbolic rotations.
For hyperbolic rotations (µ = −1), noting that cosh2 x− sinh2 x = 1 and tanhx = sinhx/ coshx and thus

coshαi = 1/
√

1− tanh2 αi = 1/
√

1− 2−2i = K̄i and sinhαi = tanhαi/
√

1− tanh2 αi = K̄i fi,

the transformation in (1.1a) may be wri�en [note: the scaling by K̄i is deferred in the code](
x
y

)
i+1

= Hi

(
x
y

)
i

where Hi = K̄i

(
1 σifi
σifi 1

)
=

(
cosh(σiαi) sinh(σiαi)
sinh(σiαi) cosh(σiαi)

)
. (1.5)

This transformation is called a “hyperbolic rotation”. Successive transformations by Hi also accumulate;
denoting φ3 = φ2 + φ1, Ci = cosh(φi), Si = sinh(φi), and applying the identities C2C1 + S2S1 = C3 and
S2C1 + C2S1 = S3, this may be verified as follows [cf. (1.4)]:(

C2 S2

S2 C2

)(
C1 S1

S1 C1

)
=

(
C2C1 + S2S1 C2S1 + S2C1

S2C1 + C2S1 S2S1 + C2C1

)
=

(
C3 S3

S3 C3

)
. (1.6)

Thus, successive applications of (1.5) result again in a total rotation of the (x0, y0) vector by α =
∑n

i=0 σiαi. In
contrast with the circular case, the αi in the hyperbolic case are scaled by a factor of 0.5, or slightly smaller, as
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rotation mode (zn → 0) vectoring mode (yn → 0)

circular
(µ = 1)

(
xn
yn

)
→ K−1

n

(
cos z0 − sin z0

sin z0 cos z0

)(
x0

y0

) (
xn
zn

)
→
(

K−1
n

√
x2

0 + y2
0

z0 + atan (y0/x0)

)
linear

(µ = 0)

(
xn
yn

)
→
(

x0

y0 + z0 x0

) (
xn
zn

)
→
(

x0

z0 + y0/x0

)
hyperbolic
(µ = −1)

(
xn
yn

)
→ K−1

n

(
cosh z0 sinh z0

sinh z0 cosh z0

)(
x0

y0

) (
xn
zn

)
→
(

K−1
n

√
x2

0 − y2
0

z0 + atanh(y0/x0)

)
Table 1.5: Convergence of the CORDIC algorithm for large n. Leveraging various identities, several derived
functions may also be determined, as implemented in RR_cordic.m and RR_cordic_derived.m.

i is increased. Thus, in order to assure that all angles over a continuous range can be reached by a set of suc-
cessive rotations, the typical approach used is to do two rotations associated with the angles α = atanh(1/24),
atanh(1/213), and atanh(1/240) [see, e.g., Table 1.4]. With three such double-rotations built into the algorithm,
it may be shown that, for large n and by appropriate selection of the σi, total rotations anywhere in the range
−αmax ≤ α ≤ αmax are possible, where now αmax =

∑n
i=0 αi = 1.118173. Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total gen-
eralized rotation of −αmax ≤ z0 ≤ αmax radians [and a cumulative scaling of K−1

n ] is applied to the (x0, y0)
vector [see Table 1.5]. As a special case, defining (x0, y0) = (Kn, 0), we have (xn, yn)→ (cosh z0, sinh z0).

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
[if Kn is applied] along a curve of constant x2 − y2 such that yn → 0, while the increments of zi in (1.1b)
again keep track of the total rotation performed in the process of rotating the vector (x0, y0) to (xn, 0), so that
(xn, zn)→ (K−1

n

√
x2

0 − y2
0, z0 + atanh(y0/x0)).

Interpretation in the case of linear rotations.
For linear rotations (µ = 0), the transformation in (1.1a) may be wri�en(

x
y

)
i+1

= J

(
x
y

)
i

where J =

(
1 0
σifi 1

)
. (1.7)

Again, successive transformations by J accumulate, which may be verified as follows:(
1 0
f2 1

)(
1 0
f1 1

)
=

(
1 0

f2 + f1 1

)
(1.8)

Thus, successive applications of (1.7) result in a translation of y0 by
∑n

i=0 σifix0 (note that the xi remain
constant, due to the first row of J ). The fi in the linear case are exactly halved at each iteration, assuring
convergence, for large n and by appropriate selection of the σi, of total translations anywhere in the range
−∆ymax ≤ ∆y ≤ ∆ymax, where ∆ymax =

∑n
i=0 |σifix0| = c |x0|, where we have initialized α0 = f0 = 1 (see

Table 1.4), so that c = 2 (but other choices are certainly possible). Thus:

• Using rotation mode (1.2a), selecting σi = sign(zi) at each iteration so that zn → 0 for large n, a total trans-
lation of ∆y = z0 x0 is applied to y0 [see Table 1.5]. As a special case, defining y0 = 0, we have yn → z0 x0.

• Using vectoring mode (1.2b), selecting σi = −sign(yi) at each iteration, the original (x0, y0) vector is rotated
along a line of constant x, such that yn → 0. Noting that ∆y = z0x0 in rotation mode, it is seen that vectoring
mode is again its complement, with ∆z = y0/x0 [see Table 1.5].

In practice, linear mode is useful for approximating multiply/accumulate and divide/accumulate operations on
very simple hardware that is only capable of integer addition and bit shi�s.

1-23

https://github.com/tbewley/RR/blob/main/chap01/RR_cordic.m
https://github.com/tbewley/RR/blob/main/chap01/RR_cordic_derived.m


Renaissance Robotics (v.2021-09-01) Chapter 1: Cybernetics

ek -3

(ẽ0)
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Figure 1.7: A ring bu�er of the DT signal ek and its 7 most recent tap delays at timestep k = 11: (le�) as laid
out conceptually, as a ring, and (right) as laid out in memory. At timestep k = 12, the next value, e12, replaces
the value in memory location ẽ4, the counter k is incremented by 1, and the other existing values of ẽ stay put.

1.5.3.2 Ring bu�ers

Many of the essential operations that an embedded controller needs to implement are linear discrete-time (DT)
di�erence equations (see §9.3.3) that may be wri�en as finite impulse response (FIR) filters of the form

uk = b0 ek + b1 ek−1 + . . .+ bn ek−n, (1.9a)

or infinite impulse response (IIR) filters of the form

uk = −a1 uk−1 − . . .− am uk−m + b0 ek + b1 ek−1 + . . .+ bn ek−n. (1.9b)

To perform such computations quickly, in addition to fast access (see §1.3) to the (fixed) ai and bi coe�icients,
fast access to current and recent values (aka tap delays) of the DT signals ek and (in the case of IIR filters)
uk are needed. Instead of shi�ing all of these most recent values in memory at every timestep, a much faster
approach is to use a ring bu�er (aka circular bu�er), such as that illustrated in Figure 1.7 (with r = 8 elements).
With this approach, at each timestep k, the most recent value of ek is stored in memory location ẽmod(k,r) [that
is, within a ring bu�er with r ≥ n memory locations allocated] using modular arithmetic, and uk is given by:

ũmod(k,r) = b0 ẽmod(k,r) + b1 ẽmod(k−1,r) + . . .+ bn ẽmod(k−n,r) or (1.10a)

ũmod(k,r) = −a1 ũmod(k−1,r) − . . .− am ũmod(k−m,r) + b0 ẽmod(k,r) + b1 ẽmod(k−1,r) + . . .+ bn ẽmod(k−n,r). (1.10b)

This approach renders it unnecessary to shi� each of the saved values of e and u in memory by one location at
each timestep, instead simply shi�ing the index k used to reference these values in their (fixed, until replaced)
locations in the ring bu�ers, and using this index (and reduced values of it, like k − j) in a modulo fashion.

FIR filters (1.10a) and IIR filters (1.10b) are needed so o�en in embedded computing that many modern CPU
cores targeting applications in robotics and cyberphysical systems include specialized hardware or so�ware
implementations of both the ring bu�ers themselves (with the required mod command on the indices handled
automatically) together with the additional low-level multiply/add circuitry or code required to implement such
filters remarkably quickly, without significantly burdening the available CPU core(s).

In many DT filters, dubbed strictly causal (see §9.3.3.2), b0 = 0. In such problems, (1.10a) or (1.10b) can
simply be calculated between timestep k − 1 and timestep k.

In the case of semi-causal filters, however, b0 6= 0. In such problems, the strictly causal part of the RHS of
(1.10a) or (1.10b) [which may involve a substantial number computations if n orm is large] can still be calculated
between timestep k− 1 and timestep k. As soon as the new value of ek becomes available, the RHS can then be
updated by adding b0 · ek, and then the result may be applied directly on the output as uk, thus applying the
output uk very very soon a�er the input ek is received, though not quite instantaneously.
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Ring bu�ers, as described above, can be implemented in dedicated hardware, such as ST’s FMAC units (see
ST AN5305), or in so�ware, such as when using ARM Helium. Performing such computations in ASIC hardware
on the MCU has the obvious advantage of o�loading the CPU core; however, the size (and, the associated
capabilities) of such ASICs needs to be decided upon when the (general purpose) MCU is designed, when the
demands of the ultimate application are largely unknown. Performing such computations with streamlined
so�ware constructs on the CPU core of the MCU leads to a much more scalable solution (from small filters
to large) to be�er fit the demands of the end application. Thus, ring bu�ers for MCUs targeting a narrow
range of applications are most e�iciently implemented on appropriately-sized ASICs; for general-purpose MCUs
targeting a more broad range of applications, so�ware-based solutions might be preferred.

1.5.3.3 Cyclic redundancy check (CRC) calculation units

As introduced in §1.1.4, and discussed in much greater detail in §13,

1.5.3.4 Random Number Generators (RNGs)

MCUs are useful because they are deterministic. (Joke: the definition of crazy...)

1.5.4 Coprocessors: DSPs, GPUs, NPUs, FPGAs, CPLDs, PRUs
More general-purpose coprocessors than ASICs, but with more specialized structure than CPUs, are sometimes
called application-specific standard parts (ASSPs) or application-specific instruction-set processors (ASIPs).
Many are perhaps best considered as some kind of System-On-Chip (SoC). Regardless of ambiguity in the lit-
erature on precisely what to call this general category of coprocessor, there are a handful of well-defined classes
of coprocessors in this general category that are of principal importance in many modern MCUs, including:

DSP
GPU A GPU consists of multiple SIMD units with a large amount of associated memory.
NPU
FPGA
CPLD
PRU

1.5.5 Timer / counter units
PWM

Encoders

1.5.6 Other dedicated communication hardware
The major wired and wireless communication protocols available today for embedded systems include PWM,
UART, I2C, SPI, CAN, RS485, USB, Ethernet, Wifi, and Bluetooth, among others, as discussed further in Chapter
3. Most MCUs implement dedicated hardware to support a number of these communication modes.

1.5.7 Pin multiplexing
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1.6 Single Board Computers (SBCs)

1.6.1 Subsystem integration: SiPs, PoPs, SoCs, SoMs, and CoMs
Integration of ICs:

• System-In-Package (SiP),
• Package-On-Package (PoP),
• System-On-Chip (SoC),
• System On Module (SoM),
• Computer On Module (CoM)
acronyms

1.6.2 Power management
i. ultra-low standby and sleep modes for ba�ery-based operation, with various cues available for wakeup, etc.,

1.6.2.1 Sleep/wake modes, real-time clocks

IoT and low-power modes
Clock speed regulation

1.6.2.2 Switching regulators

e�iciency vs. ripple rejection & voltage stability/accuracy

1.6.2.3 Switching regulators

1.6.2.4 Low-dropout (LDO) regulators

LDO
Power
Internet of Things

1.6.3 Case study: Raspberry Pi
Daughterboards

A detailed case study of a powerful class of daughterboards, dubbed Berets, is provided in §5.
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